Akshay Shankar
2022-09-24
\[\small H = -t\sum_{\langle i, j \rangle} a_i^{\dagger}a_j\hspace{0.5cm}\longrightarrow\hspace{0.5cm}|\Psi_{SF}\rangle= \frac{1}{N!} (\sum_{i=1}^M a_i^{\dagger})^N |{0}\rangle \hspace{0.5cm}\]
Consider N bosons in M lattice sites.
10 bosons; 10 lattice sites.
\[\small \underbrace{H =
-t\sum_{\langle i, j \rangle} a_i^{\dagger}a_j + \frac{U}{2}\sum_i
n_i(n_i - 1)}_{\text{coupled lattice sites}}
\hspace{0.5cm}\longrightarrow\hspace{0.5cm} \underbrace{H \{\Psi \} =
\sum_i-zt \cdot (\Psi^*a_i + \Psi a_i^{\dagger} - |\Psi|^2) +
\frac{U}{2}n_i(n_i -1)}_{\text{de-coupled lattice sites}}\]
To find the equilibrium state of the system, we must minimize
\(G = H - \mu N + TS\).
\[\frac{\partial \langle G\rangle}{\partial \Psi} =
\frac{\partial \langle H - \mu N\rangle}{\partial \Psi}\Bigg|_{T=0K} =
0\]
\[ \Psi = \langle \psi_{gs} |\hat{a} |
\psi_{gs} \rangle\]
\[\text{Minimize G} \equiv \text{Self-consistently
diagonalize } H\{\Psi\}\]
\[\small \underbrace{H = -t\sum_{\langle i, j \rangle} a_i^{\dagger}a_j + \frac{U}{2}\sum_i n_i(n_i - 1)}_{\text{coupled lattice sites}} \hspace{0.5cm}\longrightarrow\hspace{0.5cm} \underbrace{H \{\Psi_i \} = \sum_C H_{exact} + \sum_{C, C'}H_{MFT}\{ \Psi_i \}}_{\text{de-coupled clusters of sites}}\]
\[\small H = -t\sum_{\langle i, j \rangle}
a_i^{\dagger}a_j + \frac{U}{2}\sum_i n_i(n_i - 1) + V\sum_{\langle i, j
\rangle} n_i n_j\] \[\hat{n}_i =
\rho_i + \delta \hat{n}_i\hspace{0.5cm}\Bigg\downarrow
\hspace{0.5cm}\hat{a}_i = \Psi_i + \delta\hat{a}_i\] \[\small H_A \{\Psi_A, \Psi_B,\rho_A, \rho_B \} =
-zt \cdot (\Psi_B^*a_A + \Psi_B a_A^{\dagger} - \Psi_A^*\Psi_B) +
zV\cdot(\rho_Bn_A - \rho_A\rho_B) + \frac{U}{2}n_A(n_A -1) \\
\small H_B \{\Psi_A, \Psi_B,\rho_A, \rho_B \} = -zt \cdot (\Psi_A^*a_B +
\Psi_A a_B^{\dagger} - \Psi_B^*\Psi_A) + zV\cdot(\rho_An_B -
\rho_B\rho_A) + \frac{U}{2}n_B(n_B -1)\]
\[\small H \{\Psi_A, \Psi_B,\rho_A, \rho_B\}=
\sum_{i \in A} H_i + \sum_{j \in B} H_j\]
Solve self-consistently: \(\hspace{0.5cm}\Psi_i = \langle \psi_{gs,
i}|\hat{a}_i |\psi_{gs, i}\rangle \hspace{0.5cm};\hspace{0.5cm} \rho_i =
\langle \psi_{gs, i}|\hat{n}_i |\psi_{gs, i}\rangle \hspace{0.5cm};
\hspace{0.5cm} i \in \{A, B\}\)
Evaluate the partition function \(Z = Tr(e^{\beta\hat{H}})\).
\[\begin{align} Z &= \sum_{|n_1\rangle} \langle n_1 |\left (e^{\frac{\beta}{M}\hat{H}} \right )^M |n_1 \rangle \\ &= \lim_{M\to \infty} \ \ \sum_{|n_1\rangle} \langle n_1 |\left (1 + \frac{\beta}{M}\hat{H} \right)^M |n_1 \rangle \\ &\approx \sum_{\{|n_i\rangle\}} \langle n_1 |\left (1 + i\Delta t\hat{H} \right) |n_2 \rangle \cdot \langle n_2 |\left (1 + i\Delta t\hat{H} \right) |n_3 \rangle \dots \langle n_M |\left (1 + i\Delta t\hat{H} \right) |n_1 \rangle \\ &\approx \sum_{C_i \in C} w(C_i) \end{align}\]
Map d-dimensional quantum system to (d+1) classical system (\(\beta \rightarrow iM\Delta t\)).
Formulated as a classical system determined by a configuration - string of M basis elements; \(C \equiv |n_1 \rangle \rightarrow |n_2 \rangle \rightarrow \dots \rightarrow |n_M \rangle\rightarrow |n_1 \rangle\).
Ansatz for the wave-function: \(\Psi = \sum_{n} \Psi(n) |n\rangle\) such that \(\Psi(n)\) is captured by a neural network.
Train the network weights to minimize \(\langle \hat{H} \rangle\).