[Introduction](#page-1-0) [Bose Hubbard Model](#page-4-0) [Extended BHM](#page-11-0) [Spin-1 BHM](#page-17-0) [Boson-mediated interactions](#page-25-0) [Extra Slides](#page-32-0)

PRJ502: Thesis Research

Low temperature phases of interacting bosons in an optical lattice

Akshay Shankar (MS18117)

Department of Physical Sciences Indian Institute of Science Education and Research, Mohali

Thursday 27th April, 2023

4日)

 \leftarrow

1 [Introduction](#page-1-0)

- **2** [Bose Hubbard Model](#page-4-0)
- **3** [Extended BHM](#page-11-0)
- **4** [Spin-1 BHM](#page-17-0)
- **6** [Boson-mediated interactions](#page-25-0)
- 6 [Extra Slides](#page-32-0)

Dipolar gases trapped in an optical lattice creates a highly tunable quantum simulator setup.

[PRJ502: Thesis Research](#page-0-0) 3 / 39

Consider a system of spin-0 bosons with contact interaction:

$$
H=-t\sum_{\langle i,j\rangle}a_i^\dagger a_j+\frac{U}{2}\sum_i n_i(n_i-1)
$$

4 **D** F

- t hopping strength
- \bullet U on-site interaction

What quantum phases can be observed?

∢ ⊏

1 [Introduction](#page-1-0)

- 2 [Bose Hubbard Model](#page-4-0)
- **3** [Extended BHM](#page-11-0)
- **4** [Spin-1 BHM](#page-17-0)
- **6** [Boson-mediated interactions](#page-25-0)
- 6 [Extra Slides](#page-32-0)

[Introduction](#page-1-0) [Bose Hubbard Model](#page-4-0) [Extended BHM](#page-11-0) [Spin-1 BHM](#page-17-0) [Boson-mediated interactions](#page-25-0) [Extra Slides](#page-32-0) BHM: Expected phases

• Mott Insulator
$$
(U >> t)
$$
 \rightarrow $|\Psi_{MI}\rangle = \bigotimes_{i=1}^{M} |n\rangle$

$$
\bigwedge \mathbf{.} \bigwedge \mathbf{.} \bigwedge \mathbf{.} \bigwedge \mathbf{.} \bigwedge \mathbf{.} \bigwedge \mathbf{.}
$$

• Superfluid $(U << t)$ $\;\;\;\;\;\rightarrow\;\;\;\; |\Psi_{\textit{\text{SF}}}\rangle = \frac{1}{N}$ $\frac{1}{N!}(\sum_{i=1}^M a_i^{\dagger})$ $_{i}^{\dagger})^{N}\left\vert 0\right\rangle$

君

メロメ メ押メ メミメメミメ

イロト イ母 トイヨ トイヨ トー

ODLRO \implies lim $_{|i-j|\to\infty}\langle a_i^\dagger\rangle$ $\ket{a_j} = \ket{\Psi}^2 \neq 0$ $\ket{a_j} = \ket{\Psi}^2 \neq 0$ $\ket{a_j} = \ket{\Psi}^2 \neq 0$ $\ket{a_j} = \ket{\Psi}^2 \neq 0$ つくへ ≣

准

メロトメ 伊 トメ 君 トメ 君 トー

[Introduction](#page-1-0) [Bose Hubbard Model](#page-4-0) [Extended BHM](#page-11-0) [Spin-1 BHM](#page-17-0) [Boson-mediated interactions](#page-25-0) [Extra Slides](#page-32-0) BHM: Cluster MFA, Phase Diagram

Έ

 $\leftarrow \equiv$

 $\,$ $\,$

 \mathbf{h}

K ロ ▶ K 伊 ▶ K ヨ

1 [Introduction](#page-1-0)

- 2 [Bose Hubbard Model](#page-4-0)
- **3** [Extended BHM](#page-11-0)
- **4** [Spin-1 BHM](#page-17-0)
- **6** [Boson-mediated interactions](#page-25-0)
- **6** [Extra Slides](#page-32-0)

 \leftarrow

Consider a system of spin-0 bosons with nearest neighbour interactions:

$$
H = -t\sum_{\langle i,j\rangle} a_i^{\dagger} a_j + \frac{U}{2} \sum_i n_i(n_i - 1) + V \sum_{\langle i,j\rangle} n_i n_j
$$

V vs. U terms introduces density modulations in the lattice giving rise to two more phases, analogous to the BHM phases.

4日)

• Density Wave $(U, V \gg t, V \sim U)$

$$
\bigwedge\bigwedge\bigwedge\bigwedge\bigwedge\bigwedge\bigwedge\bigwedge\bigwedge\bigwedge
$$

• Supersolid $(U, V \ll t, V \sim U)$

 $\sqrt{\sqrt{1-\frac{1}{2}}}$ \bigvee $\sqrt{\sqrt{}}$

モミメ

 \leftarrow

[Introduction](#page-1-0) [Bose Hubbard Model](#page-4-0) [Extended BHM](#page-11-0) [Spin-1 BHM](#page-17-0) [Boson-mediated interactions](#page-25-0) [Extra Slides](#page-32-0)

eBHM: MFA Phase Diagram

Έ

K ロ ト K 御 ト K 店

下 不思い

[Introduction](#page-1-0) [Bose Hubbard Model](#page-4-0) [Extended BHM](#page-11-0) [Spin-1 BHM](#page-17-0) [Boson-mediated interactions](#page-25-0) [Extra Slides](#page-32-0) eBHM: MFA Phase Diagram (Left to Right, Top to Bottom)

[PRJ502: Thesis Research](#page-0-0) 2008 and 2009 and

[Introduction](#page-1-0) [Bose Hubbard Model](#page-4-0) [Extended BHM](#page-11-0) [Spin-1 BHM](#page-17-0) [Boson-mediated interactions](#page-25-0) [Extra Slides](#page-32-0)

eBHM: MFA, Triangular Lattice

Έ

 \rightarrow \Rightarrow \rightarrow

 \mathbf{p}

K ロ ▶ K 御 ▶ K 唐

1 [Introduction](#page-1-0)

- 2 [Bose Hubbard Model](#page-4-0)
- **3** [Extended BHM](#page-11-0)
- 4 [Spin-1 BHM](#page-17-0)
- **6** [Boson-mediated interactions](#page-25-0)

6 [Extra Slides](#page-32-0)

 \leftarrow

Consider a system of spin-1 bosons with contact interactions:

$$
H = -t \sum_{\langle i,j \rangle \sigma} a_{i\sigma}^{\dagger} a_{j\sigma} + \frac{U}{2} \sum_{i\sigma} n_{i\sigma} (n_{i\sigma} - 1) + U_s \sum_{i} (S_i^2 - 2n_i)
$$

We do not expect any fundamentally new phases besides Mott insulator and superfluid. However, the nature of these phases can be influenced by the spin degree of freedom.

[Introduction](#page-1-0) [Bose Hubbard Model](#page-4-0) [Extended BHM](#page-11-0) [Spin-1 BHM](#page-17-0) [Boson-mediated interactions](#page-25-0) [Extra Slides](#page-32-0) Nature of Mott insulator

Consider the limit $U, U_s \gg t$.

$$
H_i = \frac{U_s}{2}(S_i^2 - 2n_i) + \frac{U}{2}n_i(n_i - 1) - \mu n_i
$$

The ground state can be described as a fock state with well-defined net spin like so $|n_i;S_i,m_i\rangle$, such that $n_i+S_i=$ even.

As a result, we have:

$$
S_i \in \begin{cases} \{0, 2, 4, \dots, n_i\} \text{ if } n \text{ is even} \\ \{1, 3, 5, \dots, n_i\} \text{ if } n \text{ is odd} \end{cases}
$$

4日)

In order to study the ground state phases, we track the following quantities:

 \blacksquare SF order parameter: $\mathsf{\Psi} = (\Psi_1, \Psi_0, \Psi_{\overline{1}}) = \sqrt{n_{\mathsf{s}}}\cdot (\eta_1, \eta_0, \eta_{\overline{1}})$

• Net spin:
$$
\langle \vec{S}^2 \rangle \sim S(S+1)
$$

$$
\quad \textbf{\textcolor{blue}{\bullet}} \text{ Average spin: } |\langle \vec{\mathcal{S}} \rangle| = \textcolor{blue}{\textstyle \sum_{\alpha\beta}} \, \eta^*_{\alpha} J_{\alpha\beta} \eta_{\beta}
$$

イロメ イ母メ イヨメ イヨメー

Ferromagnetic interaction ($U_s = -0.08$)

Έ

メロトメ 御 トメ 君 トメ 君 ト

Ferromagnetic interaction ($U_s = -0.08$)

君

- ← ロ ▶ → r 伊 ▶ → 『三

 \mathbf{h} → 重→

君

K ロ ト K 何 ト K ヨ

 $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$

(a) Average spin, $\langle S \rangle$ (b) Net spin eigenvalue, $\langle S^2 \rangle$

 \prec э \mathbf{h} 重 \rightarrow 君

 \prec

K ロ ▶ K 何 ▶

1 [Introduction](#page-1-0)

- **2** [Bose Hubbard Model](#page-4-0)
- **3** [Extended BHM](#page-11-0)
- **4** [Spin-1 BHM](#page-17-0)
- **6** [Boson-mediated interactions](#page-25-0)

6 [Extra Slides](#page-32-0)

∢ ⊏

Consider a band of spin-1 conduction bosons interacting with a set of localized impurity bosons on a lattice:

$$
H = -t \sum_{\langle i,j \rangle \sigma} a_{i\sigma}^{\dagger} a_{j\sigma} - J_h \sum_{i} \vec{S}_i \cdot \vec{s}_i
$$

4日) \mathcal{A}

[Introduction](#page-1-0) [Bose Hubbard Model](#page-4-0) [Extended BHM](#page-11-0) [Spin-1 BHM](#page-17-0) [Boson-mediated interactions](#page-25-0) [Extra Slides](#page-32-0) Re-aligning our basis

In the strong-coupling limit $(J_h \gg t)$, we can rotate the conduction bosons to align with the impurities:

$$
\begin{bmatrix} a_{i,1} \\ a_{i,0} \\ a_{i,\overline{1}} \end{bmatrix} = \begin{bmatrix} \cos^2 \frac{\theta_i}{2} & -\frac{1}{\sqrt{2}} \sin \theta_i e^{-i\phi_i} & \sin^2 \frac{\theta_i}{2} e^{-2i\phi_i} \\ \frac{1}{\sqrt{2}} \sin \theta_i e^{i\phi_i} & \cos \theta_i & -\frac{1}{\sqrt{2}} \sin \theta_i e^{-i\phi_i} \\ \sin^2 \frac{\theta_i}{2} e^{2i\phi_i} & \frac{1}{\sqrt{2}} \sin \theta_i e^{i\phi_i} & \cos^2 \frac{\theta_i}{2} \end{bmatrix} \begin{bmatrix} d_{i,1} \\ d_{i,0} \\ d_{i,\overline{1}} \end{bmatrix}
$$

This gives us the following hamiltonian:

$$
H = \underbrace{\sum_{\langle i,j\rangle \sigma \sigma'} g_{ij}^{\sigma \sigma'} d_{i\sigma}^{\dagger} d_{j\sigma'}}_{V} - J_{H} \sum_{i} (n_{i,1} - n_{i,\overline{1}})
$$

4 **D** F

[Introduction](#page-1-0) [Bose Hubbard Model](#page-4-0) [Extended BHM](#page-11-0) [Spin-1 BHM](#page-17-0) [Boson-mediated interactions](#page-25-0) [Extra Slides](#page-32-0) Computing the effective hamiltonian

Since we have a triply degenerate ground state:

$$
\ket{0,2}=d^\dagger_{2,1}d^\dagger_{2,1}\ket{0}\qquad \ \ \ket{2,0}=d^\dagger_{1,1}d^\dagger_{1,1}\ket{0}\qquad \ \ \ket{1,1}=d^\dagger_{2,1}d^\dagger_{1,1}\ket{0}
$$

We proceed to perturbatively calculate the energy by diagonalizing V in this degenerate subspace. The first order correction is found to be $E_0^{(1)} = -4$ $\sqrt{2}$ Re $\left\{ g_{1,2}^{1,1} \right\}$ $\left\{\begin{matrix} 1,1\1,2 \end{matrix}\right\}$, giving us:

$$
E_0^{(1)}(\theta_i, \phi_i, \theta_j, \phi_i) \sim \left[\cos^2 \frac{\theta_i}{2} \cos^2 \frac{\theta_j}{2} + \frac{1}{2} \cos(\phi_i - \phi_j) \sin \theta_i \sin \theta_j + \cos(2(\phi_i - \phi_j)) \sin^2 \frac{\theta_i}{2} \sin^2 \frac{\theta_j}{2}\right]
$$

[Introduction](#page-1-0) [Bose Hubbard Model](#page-4-0) [Extended BHM](#page-11-0) [Spin-1 BHM](#page-17-0) [Boson-mediated interactions](#page-25-0) [Extra Slides](#page-32-0) Computing the effective hamiltonian (contd.)

We can then view the following expression as an effective hamiltonian governing the magnetic order of the localized spins:

$$
H_{\text{eff}}(\theta_i, \phi_i, \theta_j, \phi_j) = E_0^{(1)}(\theta_i, \phi_i, \theta_j, \phi_j) + E_0^{(0)}
$$

Further, inverting the spin components from spherical polar to cartesian provides more insight into the nature of the effective interactions.

$$
S_i^x = \cos \phi_i \sin \theta_i \qquad S_i^y = \sin \phi_i \sin \theta_i \qquad S_i^z = \cos \theta_i
$$

[Introduction](#page-1-0) [Bose Hubbard Model](#page-4-0) [Extended BHM](#page-11-0) [Spin-1 BHM](#page-17-0) **[Boson-mediated interactions](#page-25-0)** [Extra Slides](#page-32-0)

Computing the effective hamiltonian (contd.)

It turns out that the first order correction cannot be neatly inverted in this manner. However, such a structure does emerge at the second order correction which roughly has the following form:

$$
\sum_{\dots}(\dots)\cdot\frac{|g_{i,j}^{\sigma,\sigma'}|^2}{E-E_0}
$$

Below is the matrix of these mod squared values that have been inverted in terms of the cartesian spin components.

$$
|g_{ij}^{\sigma\sigma'}|^2 = \frac{t_{i,j}^2}{4} \begin{bmatrix} (1 + \vec{S}_i \cdot \vec{S}_j)^2 & 2(1 - (\vec{S}_i \cdot \vec{S}_j)^2) & (1 - \vec{S}_i \cdot \vec{S}_j)^2 \\ 2(1 - (\vec{S}_i \cdot \vec{S}_j)^2) & 4(\vec{S}_i \cdot \vec{S}_j)^2 & 2(1 - (\vec{S}_i \cdot \vec{S}_j)^2) \\ (1 - \vec{S}_i \cdot \vec{S}_j)^2 & 2(1 - (\vec{S}_i \cdot \vec{S}_j)^2) & (1 + \vec{S}_i \cdot \vec{S}_j)^2 \end{bmatrix}
$$

In this thesis, we have extensively studied the nature of phases exhibited by the Bose Hubbard model and documented the qualitative effect of various inter-particle interactions.

The next step would be to extend and validate results beyond the mean-field level, through techniques of Tensor Networks and/or Quantum Monte Carlo. While some attempts were made during the thesis, several roadblocks were faced which have not been resolved as of yet.

All figures and illustrations were made with **Julia 1.8** using the Plots.jl and Luxor.jl packages. All code written for the thesis can be found at <https://github.com/20akshay00/>.

1 [Introduction](#page-1-0)

- 2 [Bose Hubbard Model](#page-4-0)
- **3** [Extended BHM](#page-11-0)
- **4** [Spin-1 BHM](#page-17-0)
- **6** [Boson-mediated interactions](#page-25-0)

6 [Extra Slides](#page-32-0)

 \leftarrow

4日) \mathcal{A} \sim

6-site Exact Diagonalization

メロトメ部 トメミトメミト

目

Naive method: Compute for a grid of parameter values and find the points where the order parameter jumps.

Precise method: Use a bisection algorithm. Precision scales as 2^{-n} for *n* iterations. But very sensitive to convergence issues.

[Introduction](#page-1-0) [Bose Hubbard Model](#page-4-0) [Extended BHM](#page-11-0) [Spin-1 BHM](#page-17-0) [Boson-mediated interactions](#page-25-0) [Extra Slides](#page-32-0) Supplement 4: eBHM, Mean Field Approximation

$$
\hat{a}_i = \Psi_i + \delta \hat{a}_i \qquad \hat{n}_i = \rho_i + \delta \hat{n}_i
$$

Mean-field parameters: $\{\Psi_A, \Psi_B, \rho_A, \rho_B\}$

君

K ロ ▶ K 伊 ▶ K 手

メイラメ

Supplement 5: Stochastic Series Expansion

Έ

Binder cumulant, $U_L = 1 - \frac{\langle M^4 \rangle_L}{3 \langle M^2 \rangle^2}$ $\frac{\langle W'\rangle_L}{3\langle M^2\rangle_L^2}$.

Έ

K ロ ▶ K 何 ▶ K

э

- 4 国 ト \sim