Introduction

Bose Hubbard Model

Extended BHM

Spin-1 BHM 00000000 Boson-mediated interactions

Extra Slides

PRJ502: Thesis Research

Low temperature phases of interacting bosons in an optical lattice

Akshay Shankar (MS18117)

Department of Physical Sciences Indian Institute of Science Education and Research, Mohali

Thursday 27th April, 2023

Spin-1 BHM 00000000

(日)

1 Introduction

- 2 Bose Hubbard Model
- 3 Extended BHM
- 4 Spin-1 BHM
- 5 Boson-mediated interactions
- 6 Extra Slides

Introduction Bose Hubbard Model Extended BHM Spin-1 BHM Boson-mediated interactions Extra Slides

Dipolar gases trapped in an optical lattice creates a highly tunable quantum simulator setup.

Consider a system of spin-0 bosons with contact interaction:

$$H = -t \sum_{\langle i,j \rangle} a_i^{\dagger} a_j + \frac{U}{2} \sum_i n_i (n_i - 1)$$

- *t* hopping strength
- U on-site interaction

What quantum phases can be observed?

(日)

1 Introduction

- 2 Bose Hubbard Model
- 3 Extended BHM
- 4 Spin-1 BHM
- 5 Boson-mediated interactions
- 6 Extra Slides

Introduction Bose Hubbard Model Extended BHM Spin-1 BHM Boson-mediated introduction Spin-1 BHM Boson-mediated introduction BHM: Expected phases

• Mott Insulator (
$$U>>t$$
) $ightarrow$ $|\Psi_{MI}
angle = \bigotimes_{i=1}^{M} |n
angle$

• Superfluid
$$(U << t) \rightarrow |\Psi_{SF}\rangle = rac{1}{N!} (\sum_{i=1}^{M} a_i^{\dagger})^N |0
angle$$

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Bose Hubbard Model ○○○○○●○ Extended BHM

Spin-1 BHM 00000000 Boson-mediated interactions

(日)

Extra Slides

BHM: Cluster MFA

æ

BHM: Cluster MFA, Phase Diagram

Bose Hubbard Model ○○○○○○●

æ

▶ ∢ ≣

Image: A mathematical states and a mathem

Spin-1 BHM 00000000 Boson-mediated interactions

(日)

1 Introduction

- 2 Bose Hubbard Model
- 3 Extended BHM
- 4 Spin-1 BHM
- 5 Boson-mediated interactions
- 6 Extra Slides

э

Consider a system of spin-0 bosons with nearest neighbour interactions:

$$H = -t \sum_{\langle i,j \rangle} a_i^{\dagger} a_j + \frac{U}{2} \sum_i n_i (n_i - 1) + V \sum_{\langle i,j \rangle} n_i n_j$$

V vs. U terms introduces density modulations in the lattice giving rise to two more phases, analogous to the BHM phases.

eBHM: Expected phases

• Density Wave $(U, V >> t, V \sim U)$

• Supersolid ($U, V \ll t, V \sim U$)

æ

《口》《聞》《臣》《臣》

Introduction

ose Hubbard Mode 200000 Extended BHM 000●00

Spin-1 BHM 00000000 Boson-mediated interaction

< □ > < □ > < □ > < □ > < □ >

Extra Slides

eBHM: MFA Phase Diagram

æ

eBHM: MFA Phase Diagram (Left to Right, Top to Bottom)

Spin-1 BHM

Boson-mediated interactions

Extended BHM

000000

Bose Hubbard Model

PRJ502: Thesis Research

000000

Extended BHM

Boson-mediated interactions

eBHM: MFA, Triangular Lattice

æ

▶ < ∃ >

Image: A mathematical states and a mathem

1 Introduction

- 2 Bose Hubbard Model
- 3 Extended BHM
- 4 Spin-1 BHM
- 5 Boson-mediated interactions

6 Extra Slides

PRJ502: Thesis Research

æ

(日)

Consider a system of spin-1 bosons with contact interactions:

$$H = -t \sum_{\langle i,j \rangle \sigma} a_{i\sigma}^{\dagger} a_{j\sigma} + \frac{U}{2} \sum_{i\sigma} n_{i\sigma} (n_{i\sigma} - 1) + U_s \sum_i (S_i^2 - 2n_i)$$

We do not expect any fundamentally new phases besides Mott insulator and superfluid. However, the nature of these phases can be influenced by the spin degree of freedom.

Nature of Mott insulator

Bose Hubbard Model

Consider the limit $U, U_s \gg t$.

$$H_i = \frac{U_s}{2}(S_i^2 - 2n_i) + \frac{U}{2}n_i(n_i - 1) - \mu n_i$$

Spin-1 BHM

Boson-mediated interactions

Extended BHM

The ground state can be described as a fock state with well-defined net spin like so $|n_i; S_i, m_i\rangle$, such that $n_i + S_i =$ even.

As a result, we have:

$$S_i \in \begin{cases} \{0, 2, 4, \dots, n_i\} \text{ if } n \text{ is even} \\ \{1, 3, 5, \dots, n_i\} \text{ if } n \text{ is odd} \end{cases}$$

In order to study the ground state phases, we track the following quantities:

1 SF order parameter: $\Psi = (\Psi_1, \Psi_0, \Psi_{\overline{1}}) = \sqrt{n_s} \cdot (\eta_1, \eta_0, \eta_{\overline{1}})$

2 Net spin:
$$\langle \vec{S}^2 \rangle \sim S(S+1)$$

3 Average spin:
$$|\langle ec{S}
angle| = \sum_{lphaeta} \eta^*_lpha J_{lphaeta} \eta_eta$$

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

4 A²
 ▶

Ferromagnetic interaction $(U_s = -0.08)$

Bose Hubbard Model

Extended BHM

Spin-1 BHM

æ

Ferromagnetic interaction ($U_s = -0.08$)

Extended BHM

Bose Hubbard Model

Spin-1 BHM

Image: A mathematical states and a mathem

æ

イロト イボト イヨト イヨト

(a) Average spin, $\langle S \rangle$

(b) Net spin eigenvalue, $\langle S^2 \rangle$

Image: A mathematical states of the state

(日)

1 Introduction

- 2 Bose Hubbard Model
- **3** Extended BHM
- 4 Spin-1 BHM
- **5** Boson-mediated interactions

6 Extra Slides

PRJ502: Thesis Research

æ

Consider a band of spin-1 conduction bosons interacting with a set of localized impurity bosons on a lattice:

$$\mathcal{H}=-t\sum_{\langle i,j
angle \sigma}a^{\dagger}_{i\sigma}a_{j\sigma}-J_{h}\sum_{i}ec{\mathcal{S}}_{i}\cdotec{\mathcal{S}}_{i}$$

In the strong-coupling limit $(J_h \gg t)$, we can rotate the conduction bosons to align with the impurities:

$$\begin{bmatrix} a_{i,1} \\ a_{i,0} \\ a_{i,\overline{1}} \end{bmatrix} = \begin{bmatrix} \cos^2 \frac{\theta_i}{2} & -\frac{1}{\sqrt{2}} \sin \theta_i e^{-i\phi_i} & \sin^2 \frac{\theta_i}{2} e^{-2i\phi_i} \\ \frac{1}{\sqrt{2}} \sin \theta_i e^{i\phi_i} & \cos \theta_i & -\frac{1}{\sqrt{2}} \sin \theta_i e^{-i\phi_i} \\ \sin^2 \frac{\theta_i}{2} e^{2i\phi_i} & \frac{1}{\sqrt{2}} \sin \theta_i e^{i\phi_i} & \cos^2 \frac{\theta_i}{2} \end{bmatrix} \begin{bmatrix} d_{i,1} \\ d_{i,0} \\ d_{i,\overline{1}} \end{bmatrix}$$

This gives us the following hamiltonian:

$$H = \underbrace{\sum_{\langle i,j \rangle \sigma \sigma'} g_{ij}^{\sigma \sigma'} d_{i\sigma}^{\dagger} d_{j\sigma'}}_{V} - \underbrace{J_H \sum_{i} (n_{i,1} - n_{i,\overline{1}})}_{H_0}$$

Computing the effective hamiltonian

Bose Hubbard Model

Since we have a triply degenerate ground state:

Extended BHM

$$|0,2
angle = d^{\dagger}_{2,1}d^{\dagger}_{2,1} \ket{0} \hspace{1.5cm} |2,0
angle = d^{\dagger}_{1,1}d^{\dagger}_{1,1} \ket{0} \hspace{1.5cm} |1,1
angle = d^{\dagger}_{2,1}d^{\dagger}_{1,1} \ket{0}$$

Spin-1 BHM

Boson-mediated interactions

0000000

We proceed to perturbatively calculate the energy by diagonalizing V in this degenerate subspace. The first order correction is found to be $E_0^{(1)} = -4\sqrt{2} \operatorname{Re}\left\{g_{1,2}^{1,1}\right\}$, giving us:

$$E_0^{(1)}(\theta_i, \phi_i, \theta_j, \phi_i) \sim \left[\cos^2 \frac{\theta_i}{2} \cos^2 \frac{\theta_j}{2} + \frac{1}{2} \cos(\phi_i - \phi_j) \sin \theta_i \sin \theta_j + \cos(2(\phi_i - \phi_j)) \sin^2 \frac{\theta_i}{2} \sin^2 \frac{\theta_j}{2}\right]$$

Computing the effective hamiltonian (contd.)

Extended BHM

Bose Hubbard Model

We can then view the following expression as an effective hamiltonian governing the magnetic order of the localized spins:

$$H_{\rm eff}(\theta_i,\phi_i,\theta_j,\phi_j) = E_0^{(1)}(\theta_i,\phi_i,\theta_j,\phi_j) + E_0^{(0)}$$

Spin-1 BHM

Boson-mediated interactions

0000000

Further, inverting the spin components from spherical polar to cartesian provides more insight into the nature of the effective interactions.

$$S_i^x = \cos \phi_i \sin \theta_i$$
 $S_i^y = \sin \phi_i \sin \theta_i$ $S_i^z = \cos \theta_i$

Computing the effective hamiltonian (contd.)

Extended BHM

Bose Hubbard Model

It turns out that the first order correction cannot be neatly inverted in this manner. However, such a structure does emerge at the second order correction which roughly has the following form:

Spin-1 BHM

Boson-mediated interactions

0000000

$$\sum_{\dots} (\dots) \cdot \frac{|g_{i,j}^{\sigma,\sigma'}|^2}{E - E_0}$$

Below is the matrix of these mod squared values that have been inverted in terms of the cartesian spin components.

$$|g_{ij}^{\sigma\sigma'}|^{2} = \frac{t_{i,j}^{2}}{4} \begin{bmatrix} (1+\vec{S_{i}}\cdot\vec{S_{j}})^{2} & 2(1-(\vec{S_{i}}\cdot\vec{S_{j}})^{2}) & (1-\vec{S_{i}}\cdot\vec{S_{j}})^{2} \\ 2(1-(\vec{S_{i}}\cdot\vec{S_{j}})^{2}) & 4(\vec{S_{i}}\cdot\vec{S_{j}})^{2} & 2(1-(\vec{S_{i}}\cdot\vec{S_{j}})^{2}) \\ (1-\vec{S_{i}}\cdot\vec{S_{j}})^{2} & 2(1-(\vec{S_{i}}\cdot\vec{S_{j}})^{2}) & (1+\vec{S_{i}}\cdot\vec{S_{j}})^{2} \end{bmatrix}$$

Conclusion & Future outlook

In this thesis, we have extensively studied the nature of phases exhibited by the Bose Hubbard model and documented the qualitative effect of various inter-particle interactions.

The next step would be to extend and validate results beyond the mean-field level, through techniques of Tensor Networks and/or Quantum Monte Carlo. While some attempts were made during the thesis, several roadblocks were faced which have not been resolved as of yet.

All figures and illustrations were made with **Julia 1.8** using the Plots.jl and Luxor.jl packages. All code written for the thesis can be found at https://github.com/20akshay00/.

(日)

1 Introduction

- 2 Bose Hubbard Model
- 3 Extended BHM
- 4 Spin-1 BHM
- 5 Boson-mediated interactions

6 Extra Slides

PRJ502: Thesis Research

э

6-site Exact Diagonalization

イロト イヨト イヨト イヨト

1

Naive method: Compute for a grid of parameter values and find the points where the order parameter jumps.

Precise method: Use a bisection algorithm. Precision scales as 2^{-n} for *n* iterations. But very sensitive to convergence issues.

Supplement 4: eBHM, Mean Field Approximation

Extended BHM

Bose Hubbard Model

$$\hat{a}_i = \Psi_i + \delta \hat{a}_i \qquad \hat{n}_i = \rho_i + \delta \hat{n}_i$$

Spin-1 BHM

Boson-mediated interactions

(日)

Mean-field parameters: $\{\Psi_A, \Psi_B, \rho_A, \rho_B\}$

Supplement 5: Stochastic Series Expansion

Extended BHM

Bose Hubbard Model

Spin-1 BHM

Boson-mediated interactions

æ

→ < ∃→

Binder cumulant, $U_L = 1 - \frac{\langle M^4 \rangle_L}{3 \langle M^2 \rangle_I^2}$.

æ

Image: A mathematical states and a mathem

→ < ∃→