Bose Hubbard Model

Extended Bose Hubbard Model

Extra Slides

PRJ501: Thesis Research Low temperature phases of Dipolar gas in an optical lattice

Akshay Shankar (MS18117)

Department of Physical Sciences Indian Institute of Science Education and Research, Mohali

Thursday 12th January, 2023

- 2 Bose Hubbard Model
- **3** Extended Bose Hubbard Model
- 4 Extra Slides

æ

《口》《聞》《臣》《臣》

Dipolar gases trapped in an optical lattice creates a highly tunable quantum simulator setup.

Such a system is also a physical realization of the Bose Hubbard Hamiltonian. This gives us a direct mapping of a theoretical toy model and an experimental setup. $\underset{OO \bullet}{\text{Introduction}}$

Bose Hubbard Model

Extended Bose Hubbard Model

Extra Slides

The Hamiltonian

$$H = -t \sum_{\langle i,j \rangle} a_i^{\dagger} a_j + \frac{U}{2} \sum_i n_i (n_i - 1) + V \sum_{\langle i,j \rangle} n_i n_j + \dots$$

Bose Hubbard Model

- *t* hopping strength
- U on-site interaction
- V nearest-neighbour interaction

What (quantum) phases can be exhibited?

2 Bose Hubbard Model

3 Extended Bose Hubbard Model

æ

Bose Hubbard Model

Extended Bose Hubbard Model

Extra Slides

BHM: Expected phases

• Mott Insulator (U>>t) ightarrow $|\Psi_{MI}
angle = \bigotimes_{i=1}^{M} |n
angle$

• Superfluid $(U \ll t) \rightarrow |\Psi_{SF}\rangle = \frac{1}{N!} (\sum_{i=1}^{M} a_i^{\dagger})^N |0\rangle$

- 4 同 ト 4 回 ト

Bose Hubbard Model

Extended Bose Hubbard Model

Extra Slides

BHM: Exact Diagonalization (1D)

 $\begin{array}{l} \text{Condensate fraction} \implies ||a_i^{\dagger}a_j||_{\infty}/N \sim \mathcal{O}(1) \\ \\ \text{Off-diagonal long-range order (ODLRO)} \implies \lim_{|i-j| \to \infty} \langle a_i^{\dagger}a_j \rangle \neq 0 \end{array}$

Bose Hubbard Model

Extended Bose Hubbard Model

< □ > < 向 > .

Extra Slides

BHM: Mean Field Approximation

Bose Hubbard Model

Extended Bose Hubbard Model

Extra Slides

BHM: Mean Field Approximation, Phase Diagram

 $\mathsf{ODLRO} \implies \mathsf{lim}_{|i-j| \to \infty} \langle a_i^{\dagger} a_j \rangle = |\Psi|^2 \neq 0 \quad (\mathsf{S.S.B.})$

Bose Hubbard Model 00000●000 Extended Bose Hubbard Model

< □ > < A >

Extra Slides

BHM: Mean Field Approximation, Phase Diagram, contd.

Figure 1: Average occupation number

Bose Hubbard Model

Extended Bose Hubbard Model

Extra Slides

BHM: Cluster MFA

æ

Bose Hubbard Model 0000000€0 Extended Bose Hubbard Model

Extra Slides

BHM: Cluster MFA, Phase Diagram

æ

Bose Hubbard Model

Extended Bose Hubbard Model

Extra Slides

BHM: Cluster MFA, Mott lobe critical points

2

2 Bose Hubbard Model

3 Extended Bose Hubbard Model

4 Extra Slides

PRJ501: Thesis Research

æ

Bose Hubbard Model

Extended Bose Hubbard Model

Extra Slides

eBHM: Expected Phases

$$H = -t\sum_{\langle i,j\rangle}a_i^{\dagger}a_j + \frac{U}{2}\sum_i n_i(n_i-1) + V\sum_{\langle i,j\rangle}n_in_j$$

V vs. U terms introduces density modulations in the lattice giving rise to two more phases, analogous to the BHM phases.

- Mott Insulator \longrightarrow Density Wave
- Superfluid → Supersolid

Bose Hubbard Model

Extended Bose Hubbard Model

Extra Slides

eBHM: Mean Field Approximation

Mean-field parameters: $\{\Psi_A, \Psi_B, \rho_A, \rho_B\}$

æ

Bose Hubbard Mode

Extended Bose Hubbard Model

Extra Slides

eBHM: MFA Phase Diagram

æ

イロト イボト イヨト イヨト

Bose Hubbard Model

Extended Bose Hubbard Model

Extra Slides

eBHM: MFA Phase Diagram (Left to Right, Top to Bottom)

Bose Hubbard Mode

 $\begin{array}{c} \mathsf{Extended} \ \mathsf{Bose} \ \mathsf{Hubbard} \ \mathsf{Model} \\ \texttt{ooooo} \bullet \texttt{oooo} \end{array}$

Extra Slides

eBHM: MFA, Triangular Lattice

Mott Insulator	Superfluid	Density Wave	Supersolid

PRJ501: Thesis Research

æ

Bose Hubbard Model

Extended Bose Hubbard Model

Extra Slides

Moving beyond mean field; QMC

$$Z = Tr(\exp(-\beta H))$$

$$Z = Tr\left[\sum_{n=0}^{\infty} \frac{(-\beta)^n}{n!} \cdot \left(\sum_{b} H_{b,1} + H_{b,2}\right)^n\right]$$

$$Z = \sum_{n=0}^{\infty} \frac{(-\beta)^n}{n!} \cdot \sum_{|\alpha\rangle} \sum_{S_n} \langle \alpha | \left(\prod_{\{b,i\} \in S_n} H_{b,i} \right) | \alpha \rangle = \sum_{C_i \in \mathcal{C}} w(C_i)$$

Define configuration of the system, $C_i \equiv [|\alpha\rangle, S_n]$. Sample these $C_i \in C$ ergodically to compute diagonal observables.

< ロト < 同ト < ヨト < ヨト

Bose Hubbard Model

Extended Bose Hubbard Model

< □ > < / >

Extra Slides

Stochastic Series Expansion

Distribution of expansion order

We can maintain a cut-off n_{max} dynamically as the simulation progresses and introduce negligible error.

Bose Hubbard Model

Extended Bose Hubbard Model

Extra Slides

Spin-1/2 chain $\leftrightarrow \rightarrow$ Hard-core bosons

XXZ spin-1/2 model:

$$H = \frac{J_x}{2} \sum_{\langle i,j \rangle} (S_i^+ S_j^- + S_j^+ S_i^-) + J_z \sum_{\langle i,j \rangle} S_i^z S_j^z + h_z \sum_i S_i^z$$

eBHM w/ hard-core bosons:

$$H = -t \sum_{\langle i,j \rangle} (a_i^{\dagger} a_j + a_j^{\dagger} a_i) + V \sum_{\langle i,j \rangle} n_i n_j - \mu \sum_i n_i$$

Map the operators like so:

$$S_i^+\equiv a_i^\dagger \qquad S_i^z\equiv (n_i-1/2)$$

Analogous quantities:

$$t \equiv \frac{J_x}{2}$$
 $V \equiv J_z$ $\mu = J_z - h_z$

→ < ∃→

Bose Hubbard Model

Extended Bose Hubbard Model

2 Bose Hubbard Model

3 Extended Bose Hubbard Model

æ

Bose Hubbard Model

Extended Bose Hubbard Model

Extra Slides

Supplement 0: Neural Network ansatz

Ansatz for the wave-function: $\Psi = \sum_{n} \Psi(n) |n\rangle$ such that $\Psi(n)$ is captured by a neural network.

Train the network weights to minimize $\langle \hat{H} \rangle$.

Bose Hubbard Model

Extended Bose Hubbard Model

Extra Slides

Supplement 1: Exact Diagonalization, Phase Diagram

6-site Exact Diagonalization

Bose Hubbard Model

Extended Bose Hubbard Model

Extra Slides

Supplement 2: BHM Mean Field

イロト イヨト イヨト イヨト

Bose Hubbard Model

Extended Bose Hubbard Model

Extra Slides

Supplement 3: eBHM Mean Field

$$\begin{aligned} \mathcal{H}_{A}\{\Psi_{A},\Psi_{B},\rho_{A},\rho_{B}\} &= -zt\cdot\left(\Psi_{B}^{*}a_{A}+\Psi_{B}a_{A}^{\dagger}-\Psi_{A}^{*}\Psi_{B}\right) \\ &+ zV\cdot\left(\rho_{B}n_{A}-\rho_{A}\rho_{B}\right)+\frac{U}{2}n_{A}(n_{A}-1) \end{aligned}$$

$$\begin{aligned} \mathcal{H}_B\{\Psi_A,\Psi_B,\rho_A,\rho_B\} &= -zt \cdot \left(\Psi_A^* a_B + \Psi_A a_B^\dagger - \Psi_B^* \Psi_A\right) \\ &+ zV \cdot \left(\rho_A n_B - \rho_B \rho_A\right) + \frac{U}{2} n_B(n_B-1) \end{aligned}$$

$$H\{\Psi_A, \Psi_B, \rho_A, \rho_B\} = \sum_{i \in A} H_i + \sum_{j \in B} H_j$$

æ

Bose Hubbard Model

Extended Bose Hubbard Model

Extra Slides

Supplement 4: Extracting Phase Boundaries

Naive method: Compute for a grid of parameter values and find the points where the order parameter jumps.

Precise method: Use a bisection algorithm. Precision scales as 2^{-n} for *n* iterations. But very sensitive to convergence issues.

Bose Hubbard Mode

Extended Bose Hubbard Model

Extra Slides

Supplement 5: Local minima

PRJ501: Thesis Research

æ