
2020 Summer Project

IISER Mohali

Exploring wavepacket interaction with 1D
potentials using computational methods

Name:
Akshay Shankar

Supervisor:
Dr. P. Balanarayan



Contents

1 Bound states of 1D potentials 1
1.1 Numerov method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Transmittance and Reflectance using TISE 2
2.1 Single step potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Piecewise constant potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Transfer matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Observing emergence of resonance states in 1D well . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Time Dependant Schrodinger Equation 6
3.1 Approximating the propagation operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Crank-Nicolson approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5 Transmission through a double barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 TDSE with time varying potential 9
4.1 Split operator method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Conclusion 9

1



1 Bound states of 1D potentials

The one dimensional time independant schrodinger equation is given by:

− h̄2

2m

d2ψ

dx2
+ V (x)ψ(x) = Eψ(x)

where ψ(x) is the wave function, V (x)is the potential energy, m is the mass and h̄ is the reduced Planck’s
constant. As this is an eigenvalue equation, we require boundary conditions as well as a trial energy to guess
a solution.

1.1 Numerov method

Taking advantage of the form of the schrodinger equation, we can manipulate taylor expansions (finite
differences) after discretizing the position grids as {x0, x1, ..., xN} such that, xn = x0 + ndx to obtain an
iterative solution for the wave function [1]:

d2ψ

dx2
+ k2(x)ψ(x) = 0; k2(x) =

2m

h̄2 (E − V (x))

ψn =
2
(
1− 5

12 h̄
2k2
n

)
ψn −

(
1 + 1

12 h̄
2k2
n−1

)
ψn−1

1 + 1
12 h̄

2k2
n+1

In this implementation, I use a random energy value as a starting seed, then build the solution using the
formula above and check the sign of the function at the right end. When the energy value is slightly above or
below the eigenvalue, the wave function explodes above/below the x axis respectively, so by iteratively using
a bijection method to find the root, we are able to obtain an estimate of when exactly the wave function dies
off at the ends, and thereby the energy eigenvalue of that bound state. There can be other methods based
on counting the number of nodes, matching methods, etc.

1.2 Results

These are few of the bound state wave functions obtained for common 1 dimensional potentials;

(a) Harmonic oscillator potential (b) Step potential

Figure 1: Red curve is ψ(x) and blue curve is |ψ(x)|2
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2 Transmittance and Reflectance using TISE

Matching the value of the wavefunction and its derivative is done at the boundaries of the potential while
finding the form of the wavefunction. By recasting this information in an appropriate way, we can construct
a transfer matrix that gives us information on the reflectance and transmittance of a wave packet interacting
with a potential. This arises from the fact that, the overall wave function can be thought of being decom-
posed into an ”incoming” wave and an ”outgoing” wave.

2.1 Single step potential

Let us take a simple step potential, with values V1 and V2 on either side of the boundary, and let the wave
function be ψ(x)

ψ(x) = Aψ1(x) +Bψ2(x)

ψ′(x) = Aψ′1(x) +Bψ′2(x)

Writing it in matrix form; [
ψ(x)
ψ′(x)

]
=

[
ψ1(x) ψ2(x)
ψ′1(x) ψ′2(x)

] [
A
B

]
Based on the values of E and V, the form of the wave function is oscillatory or exponential, and the matrix
equation can be written as a product of simpler matrices, with the co efficients given by the table 1. (x is
the boundary position and E is the energy of the particle)[

ψ(x)
ψ′(x)

]
= K(V )E(V ;x)

[
A
B

]

Figure 2: Single step potential configuration

Returning to the step potential, if the functions on either side of the boundary (x=a) are given as:
Region 1: x ≤ a

ψ(x) = Aψ1(x) +Bψ2(x)

Region 2: x > a
ψ(x) = Aφ1(x) +Bφ2(x)

The continuity of the wavefunction and its derivative can now be written as:

K(V1)E(V1; a)

[
A
B

]
= K(V2)E(V2; a)

[
C
D

]
[
A
B

]
= E−1(V1; a)K−1(V1)K(V2)E(V2; a)

[
C
D

]
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Case1 : E > V Case 2: E = V Case 3: E < V

k =
√

2m(E − V )/h̄2 k =
√

2m(V − E)/h̄2

K(V) [
1 1

+ik −ik

] [
1 0
0 1

] [
1 1

+k −k

]
K−1(V )

1

2

[
1 1

ik
1 − 1

ik

] [
1 0
0 1

]
1

2

[
1 − 1

k
1 1

k

]
E(V;x) [

eikx 01
0 e−ikx

] [
1 x
0 1

] [
e−kx 0

0 ekx

]
E−1(V ;x) [

e−ikx 0
0 eikx

] [
1 −x
0 1

] [
ekx 0
0 e−kx

]

Table 1: The matrices K(V ) and E(V ;x) and their inverses for the three cases.

2.2 Piecewise constant potentials

Any continuous potential can be broken down into small constant piecewise potentials, the previous section
can be extended easily to this case to calculate the transfer matrix.

Figure 3: Combination of multiple step potentials

V (x) = Vj , aj−1 < x < aj

Let us take the solution in a region j to be;

ψ(x) = Ajψ1(x) +Bjψ2(x), aj−1 ≤ x ≤ aj

We can now relate the co efficients using the previous sections’ results.[
A0

B0

]
= E−1(V0; a0)K−1(V0)K(V1)E(V1; a0)

[
A1

B1

]
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Case 1 : E > V Case 2 : E = V Case 3 : E < V

k =
√

2m(E − V )/h̄2 k =
√

2m(V − E)/h̄2

[
cos(kδ) −k−1 sin(kδ)
k sin(kδ) cos(kδ)

] [
1 −δ
0 1

] [
cosh(kδ) −k−1 sinh(kδ)
k sinh(kδ) cosh(kδ)

]

Table 2: Real 2x2 matrices M(V ; δ) for the three cases (δj = aj+1 − aj)

[
A0

B0

]
= T01

[
A1

B1

]
[
A1

B1

]
= T12

[
A2

B2

]
So we get the overall relation between co efficients to be:[

A0

B0

]
= T01T12...TN−1,NTN,N+1

[
AN+1

BN+1

]
[
A0

B0

]
= T0,N+1

[
AN+1

BN+1

]
Tj,j+1 = E−1(Vj ; aj)K

−1(Vj)K(Vj+1)E(Vj+1; aj)

For improving computational performance, the matrix can be broken down into a different way;

Tj−1,jTj,j+1 = E−1(Vj−1; aj−1)K−1(Vj−1)×K(Vj)E(Vj ; aj−1)E−1(Vj ; aj)K
−1(Vj)︸ ︷︷ ︸

M(Vj ,δj)

×K(Vj+1)E(Vj+1)E(Vj+1; aj)

2.3 Transfer matrix

This algorithm will be used to compute the transfer matrices relating the amplitudes of the wavefunction at
the leftmost region, [AL, BL]T and that of the rightmost region, [AR, BR]T .

E(VL; a0)

[
AL
BL

]
= K−1(VL)M1...MNK(VR)E(VR; aN )

[
AR
BR

]
[
A′L
B′L

]
= K−1(VL)


N∏
j=1

M(Vj ; δj)

K(VR)

[
A′R
B′R

]

M =


N∏
j=1

M(Vj ; δj)

 =

[
m11(E) m12(E)
m21(E) m22(E)

]

T =
1

2

[
1 1

ikL
1 −1

ikL

] [
m11(E) m12(E)
m21(E) m22(E)

] [
1 1
ikR ikR

]
Computationally, we can calculate the M-matrix for every potential interval (except first and last) and

multiply them using the above mentioned relation to find the transfer matrix. Using the elements of the
T-matrix, we can then calculate the transmission/reflectance ratios.
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2.4 Results

By dividing any potential into piecewise step potentials, we can observe the transmittance ratio of the wave
over any range of incident energy. Here are the transmission plots for a few potentials (inset graphs are the
potential functions):

(a) Transmission through Gaussian barrier (b) Transmission through double well potential

2.5 Observing emergence of resonance states in 1D well

Resonance states are those wave functions having energy such that the transmission ratio through the po-
tential is 1, i.e, perfect transmission. It can be observed that resonance states are closely connected to the
bound states of the system. As we decrease the depth of the rectangular well, every time a bound state
reaches threshold, a new resonance state is created.[3][4]

The units used are h̄ = me = 1 (atomic units), so the energy is measured in the appropriate units. For this
finite rectangular well of width 2.5a0, as the depth is decreased from 7.5Eh (bottom right plot), the fourth
bound state threshold is at ≈ 6.9Eh, and we see a new resonance state appearing. Similarly, at E = 3.14Eh
(top right plot), which is the third bound state threshold, another resnonance state is formed.

Figure 4: Emergence of resonance states as well depth is decreased.
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3 Time Dependant Schrodinger Equation

The time-dependant schrodinger equation in 1 dimension is given by:

ih̄
∂

∂t
ψ(x, t) = Ĥψ(x, t), Ĥ = − h̄2

2m

∂2

∂x2
+ V (x, t)

To solve this numerically, we discretize the position grid x and the time t.

xn → x0 + n∆x tm = t0 +m∆t

If the potential is independant of time, the formal solution to the equation is given by:

ψ(x,∆t) = e−iĤ∆t/h̄ψ(x, 0) =

∞∑
n=0

(−1)n

n!
·
(
iĤ∆t

h̄

)n
ψ(x, 0) = Û(∆t)ψ(x, t)

where ψ(x, 0) is the initial condition of the system, and Û(∆t) = e−iĤ∆t/h̄ is the unitary propagation
operator, and due to its unitarity, it preserves the inner product over time and the normalization of the wave
function is maintained. The propagation operator is approximated here to simulate time evolution.

3.1 Approximating the propagation operator

One scheme to approximate the propagation operator is to cut off the taylor expansion from second degree
terms (Euler method), however this requires small time steps for accuracy and the operator is no longer
unitary.

ψ(x, t+ ∆t) =

(
1− i∆t

h̄
Ĥ +O(∆t)2

)
ψ(x, t)

(
1− i∆t

h̄
Ĥ

)(
1− i∆t

h̄
Ĥ

)†
= 1 +

(∆t)2

h̄2 Ĥ2 6= I

To preserve unitarity and avoid numerical instability, we can combine forward and backward euler meth-
ods in the following way.

3.2 Crank-Nicolson approximation

Taking ψ(xn, tm)→ ψmn , for convenience;

ψm+1
n = [e−iĤ∆t/h̄]ψmn = [e−iĤ∆t/(2h̄) · e−iĤ∆t/(2h̄)]ψmn

[eiĤ∆t/(2h̄)]ψm+1
n = [e−iĤ∆t/(2h̄)]ψmn(

1 +
i∆t

2h̄
Ĥ

)
ψm+1
n =

(
1− i∆t

2h̄
Ĥ

)
ψmn

Re-arranging this, we get the Crank Nicolson approximation, which is unitary and numerically stable.

ψm+1
n =

(
1− i∆t

2h̄ Ĥ

)
(

1 + i∆t
2h̄ Ĥ

)ψmn +O(∆t)2
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Using finite differences to approximate the derivatives, we get:

ψn+1
m − i∆t

2h̄

[
h̄2

2m
·
ψm+1
n+1 − 2ψm+1

n + ψm+1
n−1

(∆x)2
− Vnψm+1

n

]
= ψnm +

i∆t

2h̄

[
h̄2

2m
·
ψmn+1 − 2ψmn + ψmn−1

(∆x)2
− Vnψmn

]

Setting α = ih̄∆t
4m(∆x)2 , ξn =

[
1 + i∆t

2h̄ · (
h̄2

m(∆x)2 + Vn)

]
, γn =

[
1− i∆t

2h̄ · (
h̄2

m(∆x)2 + Vn)

]

We now get a system of equations;

(−α)ψm+1
n−1 + ξnψ

m+1
n + (−α)ψm+1

n+1 = (α)ψmn−1 + γnψ
m
n + (α)ψmn+1

Introducing ψψψm = (ψm0 , ..., ψ
m
n , ..., ψ

m
N ), we can recast it into a matrix equation;

U1ψψψ
m+1 = U2ψψψ

m

where, U1 and U2 are two (N+1) x (N+1) matrices.

U1 =


ξ0 −α
−α −ξ1 −α

. . .
. . .

. . .

−α ξN−1 −α
−α ξN

 U2 =


γ0 α
α γ1 α

. . .
. . .

. . .

α γN−1 α
α γN



3.3 Algorithm

Algorithm 1 2nd order Crank Nicolson approximation

1: procedure time evolution(length)
2: Initialize dx and dt . grid resolution and time step
3: xgrid ← list from −length to +length with dx spacing
4: M← number of time steps
5: ψ0ψ0ψ0 ← initial wavefunction
6: V← list; potential configuration for each x in xgrid
7:

8: Calculate lists ααα, ξξξ, γγγ according to given formula
9: Initialize sparse tridiagonal matrices U1,U2 using above lists

10: Create empty complex matrix PSI of size N x M . N = length of xgrid
11: Assign PSI[ ; ][0] = ψ0ψ0ψ0

12: Compute LU Decomposition of matrix U1
13:

14: for m in range(0, M-2) do
15: Solve system U1*PSI[ ; ][m + 1] = U2*PSI[ ; ][m] and compute PSI[ ; ][m + 1]
16:

17: . PSI[ ; ][m] = (m)th column of PSI; value at t = t0 +m∆t
18:

19: Compute norm of each element of PSI
20: Return normPSI

7



3.4 Simulation

The initial wave packet used to simulate an electron is a gaussian moving to the right;

ψ0(x) =
1

4
√

(πσ2
0)
· exp

[
ik0x−

(x− µ0)2

2σ2
0

]
A negative imaginary potential is used at either ends to prevent unwanted reflections.[5]

Figure 5: Gaussian wave packet

3.5 Transmission through a double barrier

The transmission ratio is obtained from the transfer matrix method using the TISE as discussed in the
previous section. Using the TDSE simulation, after the wave packet impacts the potential barrier and
disperses, the reflected and transmitted probability density is calculated to find the transmission ratio and
is compared with the TDSE result.

(a) Transmission ratios using TISE by calculating
the transfer matrix

(b) Transmission ratios using TDSE for different
values of spread in position of initial wave packet

The energy levels of resonance states (100% transmission) agree very well between the two, however the
TDSE calculations seem to be an envelope of the TISE curve, but this might be due to the relatively bigger
step size of energies taken to sample the ratios in the TDSE observations. Moreover, the initial uncertainty
in position of the wave packet has been varied over a range but minimal deviation from the transmission
ratios is observed which is a surprising result, as this directly relates to the spread of momenta and the
uncertainty in the incident energy.
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4 TDSE with time varying potential

The Crank Nicholson algorithm does not provide accurate results for time varying potentials, so here we use
fourier transforms (as ffts are computed with ease) with the Split operator method. [6]

4.1 Split operator method

ih̄
∂ψ(r, t)

∂t
=

[
− h̄2

2m
∇2 + V (r, t)

]
ψ(r, t)

The split operator method is a pseudo-spectral differential equation solver. It relies on the fact that we
can switch between position and momentum representations of the wavefunctions, and the position and mo-
mentum operators are multiplicative in their respective representations. So, we can split the hamiltonian into

position space components, Ĥr = [V (r, t)]ψ(r, t) and momentum space components, Ĥk =
[
− h̄2

2m∇
2
]
ψ(r, t).

A general solution may be taken as:

ψ(r, t+ dt) =
[
e−

iĤdt
h̄

]
=

[
e−

i(Ĥr+Ĥk)dt

h̄

]
In order to have an error in the order of dt3, we perform half step in position space, a full step in momentum
space and the final half step in position space. This process is called Strang Splitting.

ψ(r, t+ dt) =

[
e−

iĤrdt
2h̄ · e−

iĤkdt

h̄ · e−
iĤrdt

2h̄

]
+O(t3)

The straightforward algorithm then follows as performing a series of fast fouries transforms and multi-
plying by the respective values of position/momenta operators.

ψ(r, t+ dt) =

[
Ûr

(
dt

2

)
F−1

[
Ûk(dt)F

[
Ûr

(
dt

2

)
ψ(r, t)

]]]
+O(dt3)

This was used to simulate a wave packet incident on a fast oscillating single rectangular barrier potential,
and attempts were made to locate conditions to attain 100% transmittance but this was not achieved.

5 Conclusion

Several simple simulation methods were explored and observations on transmission of wave packets through
potentials have been made. Other methods of using the numerov method (matching method to find energy
values) have been attempted and implemented. The split-op method was also extended to a 2D version to
study the dynamics in a Henon-Heiles potential, but this was not done extensively.

(a) (b)

Figure 6: Attempt at 2D wave packet in henon-heiles potential
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