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Abstract

Recent experimental developments in the control and manipulation of individual atoms
have made it feasible to probe the rich physics of the Bose-Hubbard model and its exten-
sions. In this thesis, we analyze the ground state phases of some of these models using
various numerical techniques. In particular, we study how the phase diagram changes due
to the introduction of different kinds of interactions between the bosonic atoms. Finally,
we attempt to extend our results beyond the mean-field level.
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Motivation & Overview

Our world is filled to the brim with a myriad of interacting many-body systems whose
physics are governed by the laws of quantum mechanics. While analytical formalisms
lay a solid mathematical foundation, they have limited utility in predicting the emergent
behaviour arising from these complex systems. Over the last few decades, numerical
simulations on computers have allowed us to make huge strides in this regard. However,
classical computers are fundamentally limited in their practical utility to study quantum
systems due to an exponential scaling of parameters with the system size. As a result, in
spite of the development of various ingenious numerical techniques and algorithms, we
remain severely limited in the size of quantum systems that we can study.

A possible solution to this problem is often attributed to Richard Feynman1, who proposed
the concept of a quantum simulator2,3. Such a setup directly leverages the quantum
nature of atoms and molecules to ’simulate’ other generic quantum systems without the
issue of exponential scaling. A quantum simulator can then be used to study the regimes
of theoretical models that are otherwise intractable through analytical and numerical
computation. Although such an idea has been floating around for decades, it has recently
gained a resurgence due to the enormous strides made in experimental techniques in the
control and manipulation of atoms4,5.

While there are several experimental platforms that can be used for simulation, we will
focus on a particular one in this thesis, namely, ultracold bosons trapped in an optical
lattice6–9. In such a system, one can manufacture various kinds of Hamiltonians by
introducing different interactions between the bosonic particles. In this thesis, we aim to
numerically study the ground state physics of this system and explore the effects of certain
kinds of manufactured interactions.

Ultracold atoms in an optical lattice

In this section, we briefly motivate the experimental realization of such a system. Let us
consider an ultracold neutral bosonic atom, under the influence of a laser that generates an
electric field E(r, t) = êẼ(r) exp(−iωt) + c.c.. This would then induce a temporary dipole
moment in the atom, p(r, t) = ê p̃ exp(−iωt) + c.c such that

p̃ = αẼ
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where α is the complex polarizability that can also depend on the driving frequency of
the electric field, ω. This induced dipole moment can then couple with the electric field
through the following interaction potential.

Udip = −1
2
⟨ p⃗ · E⃗⟩ = − 1

2ϵ0c
Re{α}I

where ⟨. . . ⟩ denotes the time average, and I = 2ϵ0c|Ẽ|2 is the field intensity. We can
thus naively see a basis to trap neutral atoms in an optical lattice whose periodicity and
depth can be tuned by varying the wavelength and power of the laser. The bosons must
be cooled to extremely low temperatures simply because the magnitude of the optical
trapping potential is quite small and is dominated by thermal excitations otherwise.

Figure 1: Pictorial representation of ultracold bosons in an optical lattice

This is, of course, an incredibly simple picture of the setup and there are many more exper-
imentally relevant details that we do not bother with as they do not affect the explorations
performed in this thesis. The interested reader may refer to Rudolf et. al. (1999)10 for a
detailed exposition on optical dipole traps for neutral atoms.

Outline of the thesis

In Chapter 1, we review the basic concepts of a quantum particle trapped in a periodic
potential. We introduce the ideas of quasi-momentum, Bloch waves and Wannier functions
accompanied with numerical solutions for a particular periodic potential.

In Chapter 2, we proceed to extend our framework to describe the system of interacting
bosons in a periodic lattice, thus deriving the Bose-Hubbard model. We also briefly discuss
the procedure to map experimental parameters to our theoretical model.

In Chapter 3, we solve the Bose-Hubbard model using various numerical techniques and
study the nature of its ground state phases.

In Chapter 4, we analyze a system of bosons with long-range interactions induced by
dipole-dipole coupling. This is done by studying the extended Bose-Hubbard model at the
mean-field level, thus identifying a variety of new ground state phases that can be realized
in the system.
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In Chapter 5, we consider spin-1 bosons on a lattice with contact interactions to understand
the effect of the spin-degree of freedom on the ground state phases of the Bose-Hubbard
model.

In Chapter 6, we analytically study the phenomenon of mediation through bosons by
considering a simple impurity model and computing the effective interactions mediated
by a conduction band of bosonic atoms on a lattice.

In Chapter 7, we discuss some attempts at extending our analysis beyond the mean-field
level. Specifically, we motivate and present the results obtained by utilizing Quantum
Monte Carlo techniques to study the finite-temperature physics of the Bose-Hubbard model.

In Chapter 8, we conclude by providing a summary of the results obtained and talk about
future prospects for this line of research.



CHAPTER

1 Quantum mechanics of periodic systems

In this chapter, we will review the basic concepts of the physics of a particle trapped in a
periodic potential. This will set the stage for extending our formalism to the many-particle
system of bosons that we wish to study in this thesis.

1.1 Exploiting structure

Consider a particle of mass m trapped in a 1D periodic potential V(x) with period a. The
Hamiltonian can then be written as:

Ĥ =
p̂2

2m
+ V̂(x) V(x + a) = V(x) (1.1)

In an attempt to uncover some structure in this system, let us draw a parallel with the
special case of a free-particle where V(x) = 0. Such a system has a continuous translation
symmetry, i.e, V(x + a) = V(x) ∀a. As a result of Noether’s theorem, the momentum k is a
conserved quantity and hence a good quantum number to label the eigenstates.

However, in the case of a periodic potential, the system only has a discrete translation
symmetry. Equivalently, the Hamiltonian commutes with the translation operator, T̂a =
e−i p̂a/h̄:

T̂aĤT̂−1
a = Ĥ ⇐⇒ [T̂a, Ĥ] = 0 (1.2)

We can then find the common eigenbasis of Ĥ and T̂a:

ĤψE,α(x) = EψE,α(x) T̂aψE,α(x) = ψE,α(x + a) = eiαψE,α (1.3)

where the eigenvalues of T̂a must be pure phases since it is a unitary operator. Now
consider the following function uE,α(x) = e−iqxψE,α(x) and its behaviour under the action
of T̂a:

T̂auE,α(x) = T̂ae−iqxψE,α(x)

= e−iq(x+a)ψE,α(x + a)

= e−iqaeiαe−iqxψE,α(x)

uE,α(x + a) = ei(α−qa)uE,α(x)

4



Chapter 1 – Quantum mechanics of periodic systems 5

If we choose to set α = qa, uE,α(x) becomes periodic with respect to x! Substituting this
relation and flipping the definition of u(x) gives us the following result.

ψE,q(x) = eiqxuE,q(x) uE,q(x + a) = uE,q(x) (1.4)

This is simply a statement of Bloch’s theorem, where ψE,q are the Bloch wave-functions and
q is the quasi-momentum. It can be easily seen that ψE,q is invariant under q → q + 2π/a.
This is a manifestation of the fact that q belongs to the reciprocal lattice of the system,
and it is sufficient to work with the values of q within a single unit cell. Generally, this is
chosen to be the Wigner-Seitz cell of the reciprocal lattice, i.e, the first Brillouin zone where
q ∈ [−π

a , π
a ].

Applying the time-independant Schrödinger equation to the Bloch wave-function, we get:

Ĥqun
q (x) =

[
h̄2

2m

(
−i

d
dx

+ q
)2

+ V(x)

]
un

q (x) = En
q un

q (x) (1.5)

where we have replaced E with the band index n. This can now be solved to obtain the
energy bands and eigenstates of the system.

1.1.1 Bloch wave-functions

We will proceed to study this system by numerically diagonalizing the Hamiltonian. Let us
consider the specific case of V(x) = V0 cos2(kx) such that V(x + a) = V(x) where a = π/k.
In order to simpify the analysis, we begin by introducing some dimensionless variables
x̃ = x/a ( =⇒ q̃ = πq/k):

Ĥqun
q (x̃) =

[
1

π2
h̄2k2

2m

(
−i

d
dx̃

+ q̃
)2

+ V0 cos2(πx̃)

]
un

q (x̃) = En
q un

q (x̃) (1.6)

As a result of this manipulation, a natural unit of energy has emerged, Er = h̄2k2/2m,
which is simply the recoil energy in the context of optical lattices. We can now write the
complete dimensionless Hamiltonian as follows:

Ĥqun
q (x̃) =

[
1

π2

(
−i

d
dx̃

+ q̃
)2

+ Ṽ0 cos2(πx̃)

]
un

q (x̃) = Ẽn
q un

q (x̃) (1.7)

We will drop the ∼ from the variables hereafter but it is implied that we are working with
the corresponding dimensionless quantities. It is now sufficient to solve the system within
a single unit cell, such that x ∈ [−0.5, 0.5] and q ∈ [−π, π]. We now discuss two possible
approaches to solve this eigenvalue problem numerically.
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Position basis

As the equation is already written in the position basis, it seems like a natural choice to use
it to construct our Hamiltonian matrix. We start by discretizing our spatial grid x ∈ [x1, xN]
into N equally spaced points like so, xk = x1 + (k − 1)∆x where ∆x = (xN − x1)/N and
k ∈ [1, N].

The wavefunction is then represented as a vector of values un
q ≡ [un

q (x1), un
q (x2), . . . , un

q (xN)]

instead of an analytical expression. Similarly, the potential energy term, V(x), is readily
seen as a diagonal matrix with the entries [V(x1), V(x2), . . . , V(xN)]. The kinetic energy
term, however, requires further consideration.(

−i
d

dx
+ q
)2

= − d2

dx2 − 2iq
d

dx
+ q2

Since our position grid is already discretized, these derivatives can be represented using
finite difference schemes like so:

d
dx

un
q (xk) =

un
q (xk+1)− un

q (xk−1)

2∆x
d2

dx2 un
q (xk) =

un
q (xk+1)− 2un

q (xk) + un
q (xk−1)

(∆x)2

This gives us a (nearly) tridiagonal hermitian matrix for the kinetic energy term.

Ĥk =
1

π2



α β . . . . β∗

β∗ α β . . . .
. β∗ α β . . .

. . . . . . . . . . . . .

. . . β∗ α β .

. . . . β∗ α β
β . . . . β∗ α


α = 2/(∆x)2 + q2

β = −1/(∆x)2 − iq/∆x

The elements at the corners of the matrix enforce the periodic boundary condition due to
the derivatives coupling the k = 0 and k = N position indices. In the absence of these, the
matrix would encode a fixed boundary condition, i.e, un

q (x0) = un
q (xk) = 0.

At this point, we have completely constructed the Hamiltonian matrix, and its eigenvalues
can be obtained using standard diagonalization algorithms. However, it turns out that such
a scheme is not very efficient and produces significant deviation of the energy bands near
the edges of the first Brillouin zone. This can be understood by interpreting this procedure
as expanding the wavefunction using a set of position basis functions, i.e, a set of Dirac
deltas, δ(x − xi) ∀i ∈ [1, N]. As a result, the co-efficient of such basis elements is simply the
value of the wavefunction at that position. Such a representation is clearly a poor choice
for the system since we have not leveraged its periodicity in any way.
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Fourier basis

In order to choose a better basis, we note that V(x) and un
q (x) have the same periodicity.

We can then expand them as a discrete Fourier sum using a plane-wave basis.

V(x) = ∑
m

Vme2πimx un
q (x) = ∑

m
cn,q

m e2πimx (1.8)

Note that we are still working with the dimensionless variables. Substituting Eq. (1.8) in
Eq. (1.7), we get an expression for the kinetic energy, which is diagonal in this basis:

1
π2

(
−i

d
dx

+ q
)2

un
q (x) = ∑

m

(
2m +

q
π

)2
e2πimxcn,q

m (1.9)

Similarly, the potential energy is given by:

V(x)un
q (x) = ∑

m
∑
l′

Vme2πi(m+l′)xcn,q
l′ = ∑

m
∑

l
Vme2πilxcn,q

m−l (1.10)

It is also readily seen that our specific choice of the lattice potential only results in three
non-zero coefficients of the Fourier sum.

V(x) = V0 cos2(πx) =
V0

4
(e2πix + e−2πix + 2) (1.11)

Putting together Eq. (1.9), Eq. (1.10) and Eq. (1.11), we can write the Schrödinger equation
as a matrix equation:

∑
m′

Hm,m′ · cn,q
m′ = ϵn

q cn,q
m (1.12)

where the matrix form of the Hamiltonian is determined as follows:

Hm,m′ =


(
2m + q

π

)2
+ V0/2 if |m − m′| = 0

V0/4 if |m − m′| = 1
0 otherwise

(1.13)

Since this basis set implicitly takes the periodicity of the system into account, we do
not have to restrict our analysis within a particular unit cell. At this point, the Fourier
expansion runs over infinite terms, so we will have to truncate it at an arbitrary mmax such
that m ∈ [−mmax, mmax] resulting in a matrix of dimension (2mmax + 1)× (2mmax + 1). It
turns out that a very small value of mmax (∼ 10) is sufficient to study the lowest energy
bands. In comparison, we required N ∼ 100 when we used the position basis.
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1.1.2 Results

Figure 1.1: First four energy bands of a 1D lattice for various lattice potentials. The black
dashed line indicates the lattice depth.

In Fig. 1.1 we have plotted the energy bands for the 1D system by diagonalizing the
Hamiltonian in the Fourier basis. We see that for the free particle case (V = 0), we have the
usual parabolic band structure. However, as the lattice potential is increased, band gaps
emerge and the widths of the lower bands become smaller, resulting in equally spaced flat
bands. This is expected since we can approximate the minima of the periodic potential as a
harmonic oscillator for large V.
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Figure 1.2: Probability distribution of Bloch wave-functions for V0 = 5Er. The lattice
potential (black) is plotted to indicate the periodicity of the system.

1.2 Constructing a localized basis

While the Bloch wavefunctions form a perfectly valid basis set for a periodic system, they
are also delocalized across the entire lattice as seen in Fig. 1.2. Such a situation is rather
cumbersome to work with, as will become clear in the next chapter when we discuss the
formalism to describe many-particle physics. Instead, we look for a localized basis set.

A simple recipe can be obtained by drawing a parallel with the free-particle case once again.
We know that the energy eigenstates are plane waves which are delocalized across all
space, and performing a Fourier transformation from k → x gives us Dirac delta functions,
which are highly localized. Similarly, the quasi-momentum q plays the role of k here and
by performing a Fourier transform over the first Brillouin zone, we can construct a new
basis by introducing a conjugate variable R that is analogous to x.

ϕn
R(x) =

1
N ∑

q∈BZ
e−iqRψn

q (x) (1.14)

where ψn
q (x) are the Bloch wave-functions of the nth band, N is the number of unit cells in

the lattice and ϕn
R(x) are the so-called Wannier functions. An immediate consequence of

this procedure is that the Wannier functions are no longer energy eigenstates, but that is a
fair price to pay for a localized basis. Also note that R can take the values na where a is the
lattice spacing, and n ∈ Z.
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Figure 1.3: Probability amplitude and density of Wannier wave-functions for Wannier func-
tions of the lowest band. The lattice potential (black) is plotted to indicate the periodicity
of the system.

We see from Fig. 1.3 that as the lattice depth is increased, the Wannier function becomes
more localized. In fact, as mentioned earlier, a deep lattice potential can be approximated
as a harmonic well and the corresponding Wannier function approaches a gaussian. Let
us now try to ascribe meaning to the conjugate index R, by considering the following
expression for some m ∈ Z.

ϕn
R+ma(x) =

1
N ∑

q∈BZ
e−iqRe−iqmaψn

q (x)

=
1
N ∑

q∈BZ
e−iqRψn

q (x − ma)

= ϕn
R(x − ma)

We see that translation in R corresponds to simply shifting the Wannier function in real
space by the same amount! This motivates the fact that R is simply an index to label the
lattice site on which the Wannier function is localized.

1.2.1 Gauge freedom and non-uniqueness

At this point, we must bring up a peculiar feature of the Bloch wavefunctions, namely that
there exists a gauge freedom in its definition.

ψ̃n
q (x) ≡ eiχn(q)ψn

q (x) (1.15)

where χn(q) can be any arbitrary function over the reciprocal lattice vectors and cannot be
determined from the Schrödinger equation. More generally we can describe it in terms of a
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unitary operation, U, like so:

ψ̃n
q (x) =

N

∑
m=1

U(q)
mnψn

q (x) (1.16)

ϕn
R(x) =

1
N ∑

q∈BZ
e−iqRψ̃n

q (x) (1.17)

This gauge freedom clearly carries over to the Wannier functions, rendering them non-
unique! Luckily, this does not change the fact that any choice of Wannier functions will still
be localized, just that they may have different ’shapes’. This motivates the existence of a
possibly unique set of Wannier functions that are maximally localized11. For instance, such a
set may be determined by minimizing the variance of the position operator.

Ω = ∑
n
⟨x2⟩n − ⟨x⟩2

n (1.18)

Things can get even more complicated when the energy bands are close enough to intersect,
in which case we must allow mixing of the Wannier functions with respect to the n index
as well12,13. However, for the purpose of this thesis, we do not take these complexities into
account and simply proceed with the choice of χn(q) = 0. This suffices for a rough order
of magnitude calculation to motivate the discussions in the following chapters.



CHAPTER

2 The Bose-Hubbard model

Now that we have set up the basic framework to describe the physics of a single particle
trapped in a periodical potential, we will proceed to use it to develop a description of a
system of interacting bosons in an optical lattice.

2.1 Derivation

Consider a system of spinless bosons of mass m trapped in an optical lattice potential, Vlat(r)
with M sites. The physics of the system is described by the following second-quantized
Hamiltonian14.

H =
∫

d3r ·Ψ(r)

[
− h̄2

2m
∇2 + Vlat(r)

]
Ψ(r)+

1
2

∫
d3r

∫
d3r′Ψ†(r)Ψ†(r′)Uint(r, r′)Ψ(r)Ψ(r′)

(2.1)
where Uint(r, r′) describes the interaction between the bosons, and Ψ(r), Ψ†(r) are the
bosonic field operators, fulfilling the bosonic commutation relations:

[Ψ(r), Ψ†(r′)] = δ(r − r′) [Ψ(r), Ψ(r′)] = 0 [Ψ†(r), Ψ†(r′)] = 0 (2.2)

Our first approximation can be motivated by observing the energy band gaps in Fig. 1.1.
As long as the interaction energies of the trapped bosons are much smaller than the first
energy gap, we can assume that the physics are mostly dominated by the lowest energy
band. We can then expand the field operators in terms of a basis of Wannier functions of
the first band.

Ψ(r) = ∑
j

ϕj(r) · aj (2.3)

where aj (a†
j ) creates (annihilates) a particle localized at the j-th lattice site in the lowest

band. The bosonic operators aj, a†
j satisfy the following commutation relations:

[aj, a†
l ] = δj,l [aj, al] = 0 [a†

j , a†
l ] = 0 (2.4)

Upon making this substitution, we arrive at the following Hamiltonian:

H = −∑
i,j

ti,ja†
i aj +

1
2 ∑

i,j,k,l
Ui,j,k,la†

i a†
j alak (2.5)

12
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where ti,j and Vi,j,k,l are defined as follows:

ti,j =
∫

d3r · ϕi(r)

[
− h̄2

2m
∇2 + Vlat(r)

]
ϕj(r) (2.6)

Ui,j,k,l =
1
2

∫
d3r

∫
d3r′ · ϕi(r)ϕj(r′)Uint(r, r′)ϕk(r)ϕl(r′) (2.7)

For sufficiently deep optical lattices, only the nearest neighbour tunnelling amplitudes are
significant (ti,i+1 ≫ ti,i+2) precisely because the Wannier functions are highly localized.
This motivates the tight-binding approximation where we neglect all the coupling terms
beyond the nearest neighbors. Note that we use ⟨i, j⟩ to indicate a sum over nearest
neighbour indices including (i, j) and (j, i).

H = − ∑
⟨i,j⟩

ti,ja†
i aj +

1
2 ∑

i,j,k,l
Ui,j,k,la†

i a†
j alak (2.8)

At this point, based on the type of interaction between the bosons, we can obtain various
flavours of the model15. For now, we will consider the simplest case of contact interaction,
which is a pseudo-potential that we can introduce to model the low energy scattering
physics16.

Uint(r, r′) =
4πh̄2as

m
δ(r − r′) = gδ(r − r′) (2.9)

where as is the s-wave scattering length of the bosons. As a result of the short range nature
of this interaction, there is only one non-zero matrix element from the interaction term,
namely, that of on-site repulsion, U = Uiiii. Upon considering an isotropic lattice (tij ≡ t,
Uiiii ≡ U), we obtain the central theme of this thesis, the Bose-Hubbard Hamiltonian.

H = −t ∑
⟨i,j⟩

a†
i aj +

U
2 ∑

i
ni(ni − 1) (2.10)

2.2 Ground state phases

To begin understanding the physics of this system, we note that it has two competing terms.
The interplay between them gives rise to two distinct quantum phases that can be classified
by analyzing the limiting cases of the Hamiltonian. For simplicity, we will work in the
grand-canonical ensemble with the Hamiltonian, HGCE = H − µ ∑i ni.

2.2.1 Mott Insulator

Let us consider the limit t ≪ U of Eq. (2.10).

H =
U
2 ∑

i
ni(ni − 1)− µ ∑

i
ni (2.11)
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Such a Hamiltonian only contains the pairwise on-site interaction energy of bosons occupy-
ing the same lattice site. We can think of ni(ni − 1)/2 as arising from nC2 which counts the
pairs of bosons on each site. This term tends to minimize the fluctuation of the occupation
number by localizing the bosons onto the lattice sites.

Since Eq. (2.11) is simply a sum over single-site Hamiltonians which are all equivalent, the
ground state solution is a pure Fock state.

|Ψ⟩ =
M⊗

i=1

|n⟩ = |n, n, . . . , n⟩︸ ︷︷ ︸
M sites

(2.12)

with ground state energy Egs = ∑i Ei such that:

Ei =
U
2

n(n − 1)− µn n =
⌊ µ

U

⌋
+ 1 (2.13)

Thus, the Mott insulator phase is described by a state with integer occupation on each
lattice site. Further, it is a gapped phase as it requires finite energy to generate excitations
(i.e. remove a boson from one site and add it to another), and it is characterized by zero
compressibility (∂N/∂µ = 0)9.

2.2.2 Superfluid

Let us now consider the other limit, t ≫ U of Eq. (2.10).

H = −t ∑
⟨i,j⟩

a†
i aj − µ ∑

i
ni (2.14)

This is simply a non-interacting tight-binding model in the second quantized notation.
The ’hopping’ term a†

i aj annihilates a particle at the jth site and creates a particle at the ith
site. Such a Hamiltonian tends to maximize the fluctuations of the occupation number by
delocalizing the bosons across the entire lattice.

It is trivially diagonalizable by switching to the Bloch basis ({ãk}):

ai =
1√
M

∑
k

e−ikri ãk (2.15)

H = ∑
k
(ϵk − µ)ã†

k ãk (2.16)

where ϵk is the dispersion relation determined based on the lattice geometry. The ground
state is then simply a condensate in the k = 0 state:

|Ψ⟩ = (ã†
0)

N |0⟩ =
(

1√
M

M

∑
i=1

ai

)N

|0⟩ (2.17)

Although it is not strictly true17, we will consider a non-ideal Bose-Einstein condensate
to be equivalent to a superfluid in this thesis. Such a phase is gapless and only requires
arbitrarily small energy to generate excitations9.
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2.2.3 Quantum phase transition

From the above discussion, we see that the Mott insulator and Superfluid phases are quite
distinct in their properties. Although this characterization was performed in the extreme
limits, we expect that in the complete Hamiltonian, Eq. (2.10), the true phases would
broadly have the same properties. The true ground states, however, may be different due
to the presence of particle-hole excitations.

As a result, even at T = 0, we expect a transition to occur between the Mott insulator and
Superfluid phases. Such a transition is facilitated by quantum fluctuations rather than
thermal ones. In the next chapter, we will try to generate the corresponding phase diagram
using various numerical techniques.

2.3 Connecting theory and experiment

Before we proceed further, it is prudent to note that the Bose-Hubbard parameters, t and U
are not independant as is apparent from the derivation in Sec. 2.1. We will explore this fact
by explicitly computing these parameters for a 1D lattice.

Let us begin with the hopping parameter as defined in Eq. (2.6) and perform some
manipulations to recast it into a surprisingly succinct form.

tij = −
∫

d3r ϕ∗
i

[
− h̄2

2m
∇2 + Vlat(r)

]
ϕj

= −
∫

d3r

(
1√
N

∑
q

eiq·ri ψ∗
q

)[
− h̄2

2m
∇2 + Vlat(r)

](
1√
N

∑
q′

eiq′·ri ψq′

)

= − 1
N ∑

qq′
eiq·ri · eiq′·rj

∫
d3r ψ∗

q

[
− h̄2

2m
∇2 + Vlat(r)

]
ψq′

= − 1
N ∑

qq′
eiq·ri · eiq′·rj · δqq′ϵq

tij = − 1
N ∑

q
ϵq · eiq·(ri−rj) (2.18)

where ϵq is the disperson relation. This tells us that the tunneling amplitude is simply a
Fourier transform of the energy dispersion of the system. On the other hand, the on-site
interaction parameter is computed quite directly from Eq. (2.7) as follows.

U = g
∫

d3r|w(r)|4 (2.19)



Chapter 2 – The Bose-Hubbard model 16

Figure 2.1: Bose-Hubbard parameters in a 1D system for various lattice depths.

We see that the parameters are dependant in Fig. 2.1. At this point, it seems that once
we have fixed the lattice potential (and hence, the Wannier functions upto a gauge), the
parameters t and U are uniquely determined. This would severely restrict the regimes of
the Bose-Hubbard model that are experimentally accessible. However, we have not taken
into the account the co-efficient g in the interaction parameter. Particularly, the s-wave
scattering length as can be tuned using Feshbach resonances18, thus restoring our ability to
explore the parameter space.

For the rest of this thesis, we will study the phase diagram of the Bose-Hubbard model
as if t and U are independant, in order to gain a complete understanding of the various
phases hosted by it. However, experimentally traversing these diagrams would require the
construction of paths by taking their dependance into account.



CHAPTER

3 Solving the Bose-Hubbard model

Consider the 1D Bose-Hubbard Hamiltonian, with N bosons and M lattice sites:

H = −t ∑
⟨i,j⟩

a†
i aj +

U
2 ∑

i
ni(ni − 1)− µ ∑

i
ni (3.1)

In this chapter, we will review some numerical techniques to study the phases exhibited
in this model. Although the 1D model is exactly solvable using a Bethe ansatz19, these
techniques are easily extended to higher dimensions and other lattice geometries where an
exact solution might not exist.

3.1 Exact Diagonalization

We begin with the most naive approach of exactly diagonalizing the Hamiltonian. A natural
basis to construct the many-body Hamiltonian is the set of Fock states, {|n1, n2, . . . , nM⟩}
defined as the simultaneous eigenstates of the site-wise number operators.

n̂i |n1, n2, . . . , nM⟩ = ni |n1, n2, . . . , nM⟩ (3.2)

such that ∑M
i=1 ni = N and ni ≥ 0.

Constructing this basis is equivalent to the combinatorics problem of enumerating all the
ways of distributing N objects in M boxes. It follows that the dimensionality of the Hilbert
space is given by d = (M+ N − 1)!/N!(M− 1)!. We can now compute the matrix elements
of the Hamiltonian, ⟨u| H |v⟩, using the following relations that follow from the bosonic
commutation relations in Eq. (2.4).

âi |n1, n2, . . . , ni, . . . , nM⟩ =
√

ni |n1, n2, . . . , ni − 1, . . . , nM⟩ (3.3)

â†
i |n1, n2, . . . , ni, . . . , nM⟩ =

√
ni + 1 |n1, n2, . . . , ni + 1, . . . , nM⟩ (3.4)

Due to the large dimension of such a matrix, a complete diagonalization would be compu-
tationally expensive and wasteful since we only aim to study the ground state properties.
As a result, an iterative procedure such as the Lanczos algorithm11 would be a better choice
since it only computes the extreme eigenvalues and eigenvectors of large matrices. We now
proceed to discuss some observables that can be used to track the phase transition.

17
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3.1.1 Observables

Consider the single particle density matrix, n(1)(r, r′) = ⟨Ψ(r)†Ψ(r′)⟩ where Ψ(r), Ψ(r′)
are the bosonic field operators introduced in Eq. (2.1). This is a matrix with respect to (r, r′)
and can be used to formulate a rigorous definition of a BEC by writing it in its diagonal
form.

n(1)(r, r′) = ∑
i

ni · ψ∗
i (r)ψi(r′)

= n0 · ψ0(r)∗ψ0(r′) + ∑
i ̸=0

ni · ψ∗
i (r)ψi(r′) (3.5)

where ni and {ψi(r)} are the eigenvalues and single-particle eigenstates of n(1)(r, r′), re-
spectively. These states {ψi(r)} are not necessarily eigenstates of the single-particle Hamil-
tonian.

Note that we have separated the term with the largest eigenvalue (n0) from the sum.
We can now define a condensate fraction, f = n0/N, which will be macroscopic ( f ∼ 1)
when the system is in a BEC phase and vanishes otherwise. As a result, when we consider
the limit |r − r′| → ∞ in the BEC phase, while most of the sum will interfere destructively
and cancel out, the first term may have a non-zero contribution20.

lim
|r−r′|→∞

n(1)(r, r′) ̸= 0 (3.6)

This condition is known as Off-Diagonal Long-Range Order (ODLRO), and will be useful
in deriving the order parameter in the mean-field analysis.

3.1.2 Results

(a) Condensate fraction (b) Off-diagonal Long-range order

Figure 3.1: Tracking the phase transition using various observables (N = M = 9)
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We see in Fig. 3.1a that the condensate fraction, f , quickly drops from 1 as U/t is increased.
However, note that it never vanishes even for arbitrarily small U/t, against our expectations
for the Mott insulator phase. This turns out to be an artifact of the finite size of the system.
Since the eigenvalues of the SPDM must satisfy n0 ≥ 1, we have f ≥ 1/M which would
vanish for large M.

On the other hand, in Fig. 3.1b we have plotted the matrix element of the SPDM with the
farthest indices, in an attempt to capture the ODLRO condition. Surprisingly, we do see
that the element starts off at 1 and quickly vanishes in the Mott insulator regime, even
though the condition of |i − j| → ∞ cannot really be achieved in such a small system.

There is also another observable that is worth tracking, namely, the average variance of
the number operator on an arbitrary lattice site, ⟨δn2⟩. Since the Mott insulator phase is
expected to be a pure Fock state, the occupation variance must vanish.

(a) Canonical ensemble (N = 9, M = 9)
(b) Grand canonical ensemble
(Nmax = 4, M = 6)

Figure 3.2: Tracking the phase transition using average variance of occupation number

Unsurprisingly, Fig. 3.2a, also demonstrates a curve with a similar trend as the ones in
Fig. 3.1. Although there seems to be some signatures of the quantum phase transition,
it seems that the Mott insulator phase strictly only exists for U/t → ∞ ( =⇒ t/U = 0).
However, note that these results were obtained from an exact diagonalization over a fixed-
N subspace of the Fock space. If we allow variable particle number (upto an arbitrary
cut-off, N ∈ [0, Nmax]) by considering a grand canonical ensemble instead, we can gain
some more insight. We see that this is indeed the case, as the phase diagram obtained in
Fig. 3.2b suggests that the Mott insulator phase could exist in an extended region away
from t/U = 0.

However, it is dubious to make this claim rigorously since all of our possible order parame-
ters are muddled by the finite (and small!) lattice size that we have considered. One could
extend this analysis by exactly diagonalizing a larger system, however, the computational
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cost increases exponentially and quickly becomes unfeasible after ∼ 20 sites. Instead, we
will proceed to explore some approximate methods that allow us to get more qualitative
but well-defined results.

3.2 Mean Field Theory

The motivation for this technique is the fact that diagonalizing the BHM in either of the
extreme limits is trivial, however the dimensionality of the Hilbert space blows up in
the general case, Eq. (3.1). Note that we will continue working exclusively in the grand
canonical ensemble.

Figure 3.3: Pictorial representation of MFT in 2D

In order to extract some qualitative features of the model, we attempt a de-coupling which
results in a system with a smaller Hilbert space. To facilitate this, we will replace the site
operators with their expectation values and ignore the higher order fluctations.

âi = Ψi + δâi

=⇒ δa†
i δaj = (a†

i − Ψ∗
i )(aj − Ψj) ≈ 0

=⇒ a†
i aj ≈ Ψja†

i + Ψ∗
i aj − Ψ∗

i Ψj (3.7)

We can now de-couple the hopping term like so:

−Hhop/t = ∑
⟨i,j⟩

a†
i aj

= ∑
⟨i,j⟩

(Ψja†
i + Ψ∗

i aj − Ψ∗
i Ψj)

= ∑
i

(
∑

j∈Ni

Ψj
)
a†

i + ∑
i

(
∑

j∈Ni

Ψ∗
j
)
ai − ∑

i

(
∑

j∈Ni

Ψj
)
Ψ∗

i (3.8)

where Ni is the set of nearest neighbour indices for the lattice site i. Defining the mean
order parameter, Ψi =

1
z ∑j∈Ni

Ψj, where z is the coordination number of the lattice, we
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obtain:

−Hhop/zt = ∑
i
(Ψia†

i + Ψ∗
i ai − ΨiΨ∗

i ) (3.9)

We can then write the entire site-decoupled Hamiltonian which depends on a set of M
mean-field parameters, {Ψi} as follows.

HMF{Ψi} = ∑
i

Hi{Ψi} (3.10)

Hi{Ψi} = −zt(Ψia†
i + Ψ∗

i ai − ΨiΨ∗
i ) +

U
2

ni(ni − 1)− µni (3.11)

The complexity of the problem is drastically reduced now that we only have to solve M
single-site Hamiltonians. Such a mean-field decoupling effectively proposes the following
product ansatz for the wavefunction:

|Ψ⟩ =
M⊗

i=1

(
∞

∑
n=0

fi,n |n⟩) (3.12)

This is in-fact equivalent to the Gutzwiller Mean-field approach21, wherein the co-efficients
fi,n are obtained such that the free energy is minimized. We will however utilize a self-
consistent scheme to obtain the ground state solution.

We can further simplify the Hamiltonian by setting Ψi = Ψ due to the translational
symmetry of the system. It then follows that Ψ = Ψ. Further, due to the U(1) symmetry
(invariance under a global phase shift, âi → eiθ âi) of the BHM, we can assume that Ψ ∈ R

without loss of generality.

Hi{Ψ} = −ztΨ(ai + a†
i ) +

U
2

ni(ni − 1)− µni + zt|Ψ|2 (3.13)

3.2.1 Numerical solution

Since all the single-site Hamiltonians are equivalent, it is sufficient to solve any one of them
and we will drop the index i henceforth. It now seems that we can trivially diagonalize
H{Ψ} to study the system. However, there are still a few considerations to be made.

Firstly, in order to construct the matrix form of H{Ψ}, the local number basis ({|n⟩}|∞n=0)
seems to be an obvious choice. However, this would give rise to an infinite dimensional
matrix, so we must choose to truncate the basis at some nmax. We will discuss this further
in Sec. 3.2.4.

Secondly, H{Ψ} is parametrized by the mean-field parameter, Ψ, which is required to
construct the matrix. But by definition, we have Ψ =

〈
ψgs
∣∣ â
∣∣ψgs

〉
which can only be

computed by diagonalizing the Hamiltonian. Thus, the parameter Ψ must be determined
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in a self-consistent manner. This can be described formally by wrapping this procedure
into a function.

f (Ψ) → Diagonalize H{Ψ} and compute ψgs →
〈
ψgs
∣∣ â
∣∣ψgs

〉
(3.14)

Solving the self-consistency loop is equivalent to finding the fixed point Ψ∗ such that
f (Ψ∗) = Ψ∗. One can now utilize the machinery of non-linear dynamics and root-finding
techniques to solve this problem.

The most direct (and ubiquitous) method to proceed with is Fixed Point Iteration. This
involves starting with an initial guess Ψ(0), and computing Ψ(n) = f (Ψ(n−1)) repeatedly
until it converges within a specified tolerance. Such a method can be highly sensitive to
the choice of initial guess, and there is no guarantee of convergence nor a bound on how
fast it happens. However, these issues can be ignored for now and do not crop up until a
later point (see Sec. 4.3).

3.2.2 Plotting the phase diagram

Before we proceed, it is important to note that the mean-field Hamiltonian clearly changes
certain features of the original Hamiltonian. A striking example of this is that while Eq. 3.1
conserves the particle number, Eq. 3.11 does not! It seems then that our ’choice’ of working
in the grand canonical ensemble is strictly necessary at the mean-field level. At this point,
we must ask whether such a Hamiltonian can still admit phases that can be classified as a
Mott insulator or a superfluid.

(a) Mott insulator; t = 0.01, µ = 2.5, U = 1 (b) Superfluid; t = 0.2, µ = 2.5, U = 1

Figure 3.4: Distribution of co-efficients in Fock basis

Solving the mean-field Hamiltonian for various parameter choices results in two distinct
phases as seen in Fig. 3.4. The Mott insulator phase is captured as a pure Fock state with
fixed occupation number on each lattice site. On the other hand, the superfluid phase
is captured as a product of coherent states, which is a well-known means of describing
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BECs20,22. This can also be understood as the ground state picking up a random phase, eiθ,
due to spontaneous breaking of the U(1) symmetry. Further, the idea of particle number
conservation can be loosely recovered by considering the thermodynamic limit wherein√
⟨δn2⟩/⟨n⟩ → 0 as N, M → ∞. In case this explanation is unsatisfactory, there is a way to

formulate this scheme without breaking number conservation20, but the analysis becomes
far more cumbersome.

Now that we have confirmed that the ground state can admit these phases, we require an
order parameter to distinguish them. A simple quantity presents itself by considering the
definition of off-diagonal long-range order from Eq. (3.6) as a means of identifying BECs.

lim
|i−j|→∞

⟨a†
i aj⟩ = lim

|i−j|→∞
⟨a†

i ⟩⟨aj⟩ = Ψ∗
i Ψj = |Ψ|2 ̸= 0 (3.15)

Note that such a decoupling is only valid at the mean-field level. We can clearly see now
that the idea of spontaneous U(1) symmetry breaking is captured by this result. Thus, we
can use the mean-field parameter Ψ as the superfluid order parameter as well.

The phase diagram can now be naively generated by computing the ground-state solution
and hence the order parameter over a grid of µ/U and t/U values.

(a) Order parameter, ⟨a⟩ (b) Occupation number variance, ⟨δn2⟩

Figure 3.5: 1D Mean-field phase diagram

A clean phase diagram is obtained in Fig 3.5a, where the Mott insulator phase manifests as
lobes in the t − µ plane. We also note from Fig. 3.5b that the occupation number variance
serves as an equally valid order parameter, giving us the same phase boundary (although
the heatmap is a bit misleading). We can now get further insight into the nature of the Mott
lobes by plotting the average occupation number.
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(a) Average occupation number (b) Cross-section at t = 0.024

Figure 3.6: Distinguishing phases using the average occupation

As expected, Fig. 3.6 shows the existence of integer occupation plateaus corresponding
to the points where the order parameter vanishes in the phase diagram. As the chemical
potential is increased, there is a sudden jump to the next Mott lobe admitting one more
boson per lattice site. Further, for a given point inside a Mott lobe, the vertical distance
to the lower (upper) arm denotes the energy required to excite a hole (particle), thus
supporting the fact that the Mott insulator is indeed a gapped phase.

We also note that the MI-SF transition is second order since the order parameter changes
continuously across the boundary. As a result, one can also perturbatively treat the hopping
term in Eq. 3.11 to directly obtain an analytic expression for the phase boundary23. This
matches exactly with our numerical results since the perturbative term is proportional to
Ψ, which can be chosen to be arbitrarily small near the phase boundary.

3.2.3 A better technique

Although the grid-based approach gives us a qualitative idea of the phase diagram, the
accuracy of the phase boundary is limited by the discretization of the grid. However,
the fact that there is only a single transition along t for a fixed value of µ lets us utilize a
bisection method to determine the transition point, tc. Performing this for a grid of values
of µ gives us the phase boundary such that the error falls as 1/2n for n bisections.

But we can do even better! To utilize the bisection method, at any given point we only
require the information of the ground state phase, i.e, the rest of the information contained
in the ground-state is unnecessary. One approach could be to directly check if Ψ = 0 is a
fixed point of the self-consistency function in Eq. 3.14. However, it turns out that Ψ = 0
is always a fixed point, but is unstable for the superfluid phase. In order to find another
approach, let us analyze the nature of convergence of the self-consistent procedure.
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(a) t = 0.06, µ = 0.5 (b) t = 0.1, µ = 0.5

Figure 3.7: Monotonic convergence of self-consistency loop

It is apparent from Fig. 3.7 that fixed-point iteration always monotonically converges to
the stable fixed point for this system. This means that using a small initial guess such as
Ψ(0) = 1e−9, we can determine whether Ψ = 0 is a stable fixed point with a single iteration
of the self-consistency loop24,25!

Figure 3.8: 1D Mean-field phase boundary determined by the bisection technique
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3.2.4 Determining nmax

Before wrapping up, we must tackle the issue of dealing with an infinite dimensional
Hamiltonian. Truncating the Fock space at an arbitrary occupation number might seem
like it fundamentally changes the model under consideration. The extreme limit of this is
setting nmax = 1 corresponding to a system of hard-core bosons, and any higher truncation
amounts to considering semi-hardcore bosons of sorts.

Figure 3.9: Qualitative variation of phase diagram as the occupation cutoff is increased.

Most notably, there will only be nmax Mott lobes and for larger chemical potential, the
entire parameter space will remain a Mott insulator since the maximum number of bosons
is capped. However, we can see that this is a minor issue upon realizing that the physics of
the low-energy lobes remain largely unaffected by the truncation and discrepancies only
arise closer to the high-energy lobes. This is demonstrated in Fig. 3.9 and can be checked
rigorously by quantifying the convergence of the phase boundaries as nmax is increased.

In this thesis, we mostly focus on the first three Mott lobes, and the corresponding phase
boundaries are found to converge quickly as nmax is increased upto a value of 10.

3.2.5 Extending to finite temperature

In this section, we demonstrate that the mean-field approach is capable of handling finite
temperature calculations as well. The only change required is to compute the expectation
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values as thermal expectations, by working with density matrices instead of the ground
state. The self-consistency relation Ψ = ⟨â⟩T = Tr{âρ}/ Tr{ρ} can be recovered as well by
imposing minimization of the free energy.

Figure 3.10: 1D Mean-field phase boundaries at finite temperatures.

At a finite temperature, Fig. 3.10 seemingly shows that the Mott insulator lobes coalesce
into a single region as the temperature is increased. However, this is infact due to the
formation of a thermally disordered phase, namely, the normal fluid. At the mean field
level, it seems similar to the superfluid since it has finite compressibility and variance of
occupation number. However, such a phase does not does not break the U(1) symmetry
and its formation is not driven by quantum fluctuations.

As the temperature is increased, the Mott insulator lobes start vanishing and the extent
of the superfluid region decreases as the normal fluid becomes the most stable phase
throughout the parameter space.

3.2.6 An alternative de-coupling

Decoupling the hopping term (a†
i aj) seems ubiquitous in literature when trying to simplify

the Bose-Hubbard model. Strangely, the standard scheme for the mean-field study of the
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(fermionic) Hubbard model involves decoupling the interaction term instead. Nothing
stops us apriori from utilizing a similar scheme as well.

n̂i = ρi + δn̂i

=⇒ δn2
i = (ni − ρi)(ni − ρi) ≈ 0

=⇒ n2
i ≈ 2ρini − ρ2

i (3.16)

The Hamiltonian can then be written as:

HMF = −t ∑
⟨i,j⟩

a†
i aj + ∑

i

(
µ − U

2
+ Uρi

)
ni −

U
2 ∑

i
ρ2

i (3.17)

If we utilize translational symmetry to set ρi = ρ and switch to the Bloch basis, we get:

HMF = −t ∑
k

(
ϵk + µ − U

2
+ Uρ

)
ã†

k ãk −
U
2

Mρ2 (3.18)

Since this is already diagonal, the ground state would simply be a condensate in the k-mode
with lowest energy. Note that such a decoupling still preserves the conservation of particle
number and as a result, ⟨a⟩ can no longer serve as an order parameter for the superfluid
phase. Regardless, we see that a Mott insulator can never be admitted as a ground state
by such a Hamiltonian since it is always a condensate. This exercise brings to light an
apparent subjectivity involved in choosing an appropriate decoupling. However, although
the choice may be guided by considering the limiting behaviour of the system, the right
choice is the one that generates the lowest ground state energy. Such a claim can be made
rigorous if we view the mean field treatment as a variational method26.

3.2.7 Pitfalls

Although the mean-field approach has allowed us to gain some insight on the BHM, it
is only reliable for qualitative results. Particularly, since we have ignored higher order
quantum fluctuations, we tend to over-estimate the extent of the ordered phase. Further,
most of the information about the lattice geometry and dimensionality is lost as we only
take into account the co-ordination number of each lattice site. Such a treatment only
becomes exact in the limit of an infinite-dimensional lattice geometry. We will now proceed
to formulate a numerical technique that tackles these issues.

3.3 Cluster Mean Field Theory

This technique can be seen a middle ground between exact diagonalization and single-site
mean field theory as portrayed in Fig. 3.11.
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Figure 3.11: Pictorial representation of CMFT in 2D

We demonstrate the idea by considering a 1D lattice with M sites. The chain can then be
divided into Nc clusters, each of length L such that M = LNc. The hopping term of the
BHM can now be written as follows.

Hhop = −t
Nc−1

∑
j=0

L−1

∑
l=1

(a†
Lj+laLj+l+1 + a†

Lj+l+1aLj+l)− t
Nc−1

∑
j=0

(a†
Lj+LaLj+L+1 + a†

Lj+L+1aLj+L)

(3.19)
where the first term, Hintra couples the sites within each cluster, and the second term, Hinter
couples the different clusters. The main idea of CMFT is to treat the intra-cluster coupling
exactly and the inter-cluster coupling at a mean-field level. Following the same de-coupling
we used in Eq. (3.7), we obtain:

Hintra = −t
N−1

∑
j=0

[(a†
Lj+L + a†

Lj+L+1)Ψ + (aLj+L + aLj+L+1)Ψ∗] + 2tNc|Ψ|2 (3.20)

where Ψ = ⟨ai⟩ is the mean-field order parameter. Putting all this together, we arrive at the
cluster-decoupled Hamiltonian.

HMF{Ψ} =
Nc−1

∑
j=0

HL
MF{Ψ} =

Nc−1

∑
j=0

(HL
j + VL

j {Ψ}) (3.21)

HL
j = −t

L−1

∑
l=1

(a†
Lj+laLj+l+1 + a†

Lj+l+1aLj+l) +
U
2

L

∑
l=1

nLj+l(nLj+l − 1)− µ
L

∑
l=1

nLj+l (3.22)

VL
j {Ψ} = −t(Ψ(a†

Lj+1 + a†
Lj+L) + Ψ∗(aLj+1 + aLj+L)) + 2t|Ψ|2 (3.23)

Again, without loss of generality one can assume Ψ ∈ R and solve the system in a self-
consistent manner. This procedure mostly remains the same for higher dimensions27 and
other lattice geometries28,29 but requires more book-keeping as we are forced to include
more mean-field parameters (one for each distinct kind of boundary site in the cluster).
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3.3.1 Results

(a) Phase boundary (b) Critical point of Mott lobes

Figure 3.12: Comparison of 1D CMFT results for various cluster sizes. The heatmap
indicates the variance of occupation number obtained through exact diagonalization of the
system with M = 6 and Nmax = 4.

We see that the estimation of the phase boundaries improves as we increase the size of
the cluster. However, while the computational cost still grows exponentially, the marginal
improvement of the boundary estimate diminishes for larger cluster sizes. Although
this might only be the case for 1D systems, we decide not to employ this technique for
further analysis due to the complexity involved in an implementation for arbitrary lattice
geometries.
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4 Dipolar bosons in a lattice

In this chapter, we consider spinless bosons that have a permanent dipole moment and are
trapped in an optical lattice. Since dipole-dipole interactions fall off as V(r) ∼ 1/r3, the
contact interaction alone results in a poor description of the system. To remedy this, we
take into account the nearest neighbour interactions as well.

H = −t ∑
⟨i,j⟩

a†
i aj +

U
2 ∑

i
ni(ni − 1) +

V
2 ∑

⟨i,j⟩
ninj − µ ∑

i
ni (4.1)

Such a Hamiltonian is generally called the Extended Bose-Hubbard model (eBHM)30. The
analysis that follows will apply for any microscopic interactions that are long-range in
nature to justify considering the nearest neighbour interactions, and not just those that have
a dipolar origin. The details only become relevant if we wish to compute experimentally
achievable values of V 31 (as in Sec. 2.3). However, we will not be dealing with this in the
thesis.

We are specifically interested in the case when U, V > 0. In such a situation, the on-site
and nearest neighbour interactions compete with each other, introducing the possibility
of breaking the translational symmetry. We proceed now to study how this affects the
ground-state phases through a mean-field analysis.

4.1 Mean Field Theory

The mean-field decoupling of the eBHM largely proceeds the same way as with the BHM.
The key difference is that we also need to decouple the ninj term by introducing another
set of mean-field parameters, {ρi}.

âi = Ψi + δâi

=⇒ δa†
i δaj = (a†

i − Ψ∗
i )(aj − Ψj) ≈ 0

=⇒ a†
i aj ≈ Ψja†

i + Ψ∗
i aj − Ψ∗

i Ψj

n̂i = ρi + δn̂i

=⇒ δniδnj = (ni − ρi)(nj − ρj) ≈ 0

=⇒ ninj ≈ ρjni + ρinj − ρiρj (4.2)

Note here that since ni = a†
i ai, we could have simply used the first decoupling for the ninj

term as well. However, the resulting mean-field Hamiltonian turns out to be incapable of

31
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hosting the phases we are interested in. In any case, neglecting the terms of O(δa2
i ) is a

lower order approximation than neglecting O(δn2
i ).

Proceeding with the derivation, we already know the decoupling for the hopping term
from Eq. (3.9). The decoupling for the interaction term proceeds in a similar way.

Hint/(V/2) = ∑
⟨i,j⟩

ninj

= ∑
⟨i,j⟩

(ρjni + ρinj − ρiρj)

= ∑
i

(
∑

j∈Ni

ρj
)
ni + ∑

i

(
∑

j∈Ni

ρj
)
ni − ∑

i

(
∑

j∈Ni

ρj
)
ρi (4.3)

Defining the mean order parameter, ρi =
1
z ∑j∈Ni

ρj, we obtain the interaction term at the
mean-field level.

Hint/(zV/2) = ∑
i
(2ρini − ρiρi) (4.4)

We can then write the entire site-decoupled Hamiltonian which depends on a set of 2M
mean-field parameters, {Ψi, ρi}.

Hi{Ψi, ρi} = −zt(Ψia†
i + Ψ∗

i ai − ΨiΨ∗
i ) +

zV
2
(2ρini − ρiρi) +

U
2

ni(ni − 1)− µni (4.5)

Following the derivation in Sec. 3.2, we might now be tempted to set Ψi = Ψ and ρi =
ρ. However, this is a bad choice to make for the eBHM, because as mentioned earlier,
the interplay of the interaction terms allows the possibility of breaking the translational
symmetry. Making this assumption would incorrectly ignore the existence of certain phases
and misrepresent the extents of others. Instead, we can consider arbitrary periodic patterns
across the lattice and write the mean-field Hamiltonian for a single unit-cell32 as follows.

HMF,UC = ∑
X∈UC

[
−zt(ΨXa†

X + Ψ∗
XaX) + (zVρX − µ)nX +

U
2

nX(nX − 1)
]

− ∑
X∈UC

[
ztΨiΨ∗

i −
zV
2

ρXρX

]
(4.6)

4.2 Results

4.2.1 1D lattice

Since the interaction term only acts between nearest neighbour pairs, there is only one
periodic pattern that is possible for the 1D lattice. This simply comprises of a unit cell with
two sites A and B that repeat through the lattice. It is prudent now to introduce the notion
of a connectivity matrix that uniquely specifies the unit cell.
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MUC =

( A B
A 0 2
B 2 0

)
Such a matrix is always symmetric and is equivalent to representing the lattice as an
undirected graph. Although this is not strictly required for the 1D chain, we will find
it useful to distinguish different patterns in more complicated lattice geometries. The
connectivity matrix also gives us a succinct way to compute the mean-field parameters.(

ΨA
ΨB

)
= MUC

(
ΨA
ΨB

)
(4.7)

which in this case simply gives us ΨA = 2ΨB and ΨB = 2ΨA. The same relation also holds
for ρX and ρX. We can now construct the Hamiltonian and self-consistently diagonalize it
to obtain the ground state solution.

Classifying the phases

Note that we now have four mean-field parameters, {ΨA, ΨB, ρA, ρB} and the various
phases can be classified using them as follows.

• When ρA = ρB = ρ and ΨA = ΨB = Ψ, this effectively restores translational invariance
and describes a Mott Insulator when Ψ = 0 and a Superfluid otherwise.

(a) Mott insulator (b) Super-fluid

Figure 4.1: Pictorial representation of the BHM phases

• When ρA ̸= ρB, this indicates a modulation of the average density of particles over the
lattice and describes a Density Wave when ΨA = ΨB = 0 and a Supersolid otherwise.

(a) Density Wave (b) Super-solid

Figure 4.2: Pictorial representation of the eBHM phases
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It is not surprising that the eBHM also hosts Mott insulator and superfluid phases since
the BHM can be recovered in the limit V → 0. When we have zV ∼ U, however, two new
analogous phases are introduced due to density modulations. The density wave phase
can simply be interpreted as two inter-weaving Mott insulators with different occupation
numbers. On the other hand, the supersolid can naively be described as a phase that
exhibits superflow while also having some kind of crystalline order due to the periodic
density modulations. Such an interpretation is rather imprecise33, but the characterization
of the phase is unambiguous atleast at the mean-field level.

Figure 4.3: Mean-field phase diagram of 1D lattice

We can see from Fig. 4.3 that for an intermediate value of V/U, all four phases can exist
in the t − µ plane. The density wave seems to appear as lobes in a similar manner to
the Mott insulator. Peculiarly, the supersolid phase is only ever observed at the ’edges’
of these density wave lobes. Consequently, there is no possibility of finding a phase
transition directly from the density wave to the superfluid phase. Similarly, there is no
direct transition from a Mott insulator to a supersolid. This seems to support the fact that a
quantum phase transition can only occur if it involves breaking a single symmetry of the
system.

We also note that we can label the density wave lobes with their average filling just as we
differentiated Mott insulator lobes with their occupation number. However, this does not
uniquely identify them, since a density wave having a filling of (1, 2) and (0, 3) will both
have an average occupation of 3/2 as seen in Fig. 4.4.
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4.2.2 2D square lattice

For a square lattice, we can come up with more than one possible repeating unit cell that
breaks translational symmetry. In such a case, we must find the solution in either case and
only admit the one having lowest ground state energy.

MUC =

( A B
A 0 4
B 4 0

)

MUC =

( A B
A 2 2
B 2 2

)

It turns out that the first pattern satisfies this condition for all parameter regimes of interest.

Figure 4.4: Mean-field phase diagrams of 2D square lattice
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We see in Fig. 4.4 that the phase diagram for a 2D square lattice qualitatively looks similar
to that of the 1D lattice in Fig. 4.3. This is because the connectivity matrix of the dominant
pattern in either case is only different by a scaling factor of two. We also see that as V/U is
increased, the density wave lobes arise between Mott insulator lobes and increase in extent
until the latter becomes unstable throughout the t − µ plane. Also note that the density
waves become the dominant phase in the diagram roughly when zV ∼ U as one would
expect. As a result, the phase diagram is quite rich since it not only involves transitions
between different phases but also between different orders (filling fractions) of density
waves.

4.2.3 2D triangular lattice

We consider the following sub-lattice pattern for our analysis of the triangular lattice.

MUC =


A B C

A 0 3 3
B 3 0 3
C 3 3 0



We can see in Fig. 4.5 that the phase diagram is quite similar to that of the square lattice
except for one qualitative difference. There are now two density wave lobes between
each pair of Mott insulator lobes due to possibility of additional fractional fillings in the
triangular lattice (i.e, 1/3, 2/3, etc).

Figure 4.5: Mean-field phase diagram of triangular lattice (V/U = 0.34)
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4.3 Issues with self-consistency

When we introduced the idea of self-consistency in Chapter 4, we also described the
procedure in terms of finding the fixed point of a function. This holds true for the eBHM
as well, except the function is now multi-variate which significantly complicates things.
For instance, our naive decision to utilize Fixed Point iteration without evaluating the
conditions required for convergence has finally caught up with us.

Unfortunately, the order parameters are generally related in a highly non-linear way which
makes it hard to determine these conditions analytically. Instead, below are the problems
that were encountered while numerically solving the system, along with possible solutions
to mitigate them.

(a) 2-cycle: r = 3.03 (b) Sub-linear convergence: r = 3.001

Figure 4.6: Convergence issues demonstrated using logistic map, x(n+1) = rx(n)(1 − x(n))

4.3.1 No convergence

This generally manifests in the form of 2-cycles.

f ({ΨA, ΨB, ρA, ρB}) = {Ψ′
A, Ψ′

B, ρ′A, ρ′B}
f ({Ψ′

A, Ψ′
B, ρ′A, ρ′B}) = {ΨA, ΨB, ρA, ρB}

Every 2-cycle encountered also seems to have a pattern that can be exploited to guess the
actual fixed point. For example:

2-cycle: (ΨA, ΨB, ρ1, ρ2) → (ΨA, ΨB, ρ2, ρ1)

Fixed point: (ΨA, ΨB, (ρ1 + ρ2)/2, (ρ1 + ρ2)/2)
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Several patterns like this can emerge, and one solution is to hard-code the guesses for fixed
points for each case. This is unfortunately not scalable to arbitrary lattice geometries and
parameter regimes. This problem arises from the strong dependancy on the initial guess
for the self-consistency loop, and can be remedied by taking several initial guesses till one
of them converges.

4.3.2 Sub-linear convergence

This manifests in a form that is decievingly similar to a 2-cycle.

f ({ΨA, ΨB, ρA, ρB}) ≈ {Ψ′
A, Ψ′

B, ρ′A, ρ′B}

f ({Ψ′
A, Ψ′

B, ρ′A, ρ′B}) ≈ {ΨA, ΨB, ρA, ρB}
The convergence happens at a very slow rate, especially close to the phase boundaries as
seen in Fig. 4.7. This can be handled by utilizing more sophisticated techniques to locate
the fixed point such as Nesterov’s acceleration.

(a) Order parameter (b) Number of iterations

Figure 4.7: Nature of convergence near phase boundaries in the BHM

4.3.3 Local minima

Finally, we come to the important point that there may be several stable fixed points for the
same system. By nature of the formulation of the mean-field technique, the true solution
is the one with the lowest ground state energy. As a result, we are forced to perform
self-consistency starting with a variety of initial guesses to avoid falling into local minima.
There does not seem to be a simple way to sample the parameter space in an efficient
manner to generate initial guesses. So, an arbitrarily chosen uniform grid was utilized for
the results presented in this thesis, but this solution is hardly satisfactory.
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5 Spinful bosons in a lattice

In this chapter, we explore another form of short-ranged interaction, this time induced by
spin-spin coupling. For this purpose, we will consider the simplest modification of the
spinless case, which is the spin-1 Bose Hubbard model34.

H = −t ∑
⟨i,j⟩σ

a†
iσajσ +

U
2 ∑

i
ni(ni − 1) + Vs ∑

i
(S2

i − 2ni)− µ ∑
i

ni (5.1)

The spin operators are determined as shown below, using the spin-1 matrices, {Jx, Jy, Jz}.

Jx =
1√
2

0 1 0
1 0 1
0 1 0

 Jy =
i√
2

0 −1 0
1 0 −1
0 1 0

 Jz =

1 0 0
0 0 0
0 0 −1

 (5.2)

S⃗i = ∑
αβ

a†
iα J⃗αβaiβ (5.3)

Note that we have only taken into account the on-site interactions (due to contact scattering
and spin-spin coupling). As a result, we do not expect to observe any fundamentally new
phases besides the Mott insulator and superfluid. However, now that the bosons have
an extra degree of freedom due to their spin (S = 1, ms ∈ {1, 0,−1}), we expect some
qualitative differences in the nature of these phases.

5.1 Mean Field Theory

The mean-field decoupling for the spin-1 BHM is is quite similar as for the spinless BHM
since we have only introduced additional on-site interaction terms. However, we are now
forced to introduce three mean-field parameters for each lattice site, one for each spin
projection, âiσ = Ψiσ + δâiσ, where σ ∈ {1, 0,−1}. This gives us the decomposition of the
hopping Hamiltonian as follows.

−Hhop/zt = ∑
iσ
(Ψiσa†

iσ + Ψ∗
iσaiσ − ΨiσΨ∗

iσ) (5.4)

As usual, we can assume translational invariance in the ground state and set Ψiσ = Ψσ ∀i.
We will also set Ψσ ∈ R for now, but will revisit this assumption further below. The spin-1

39
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BHM can now be written as a sum over single-site Hamiltonians.

Hi{Ψiσ} = −zt ∑
σ

(Ψiσa†
iσ + Ψ∗

iσaiσ − ΨiσΨ∗
iσ) +

Us

2
(S2

i − 2ni) +
U
2

ni(ni − 1)− µni (5.5)

The spin interaction term can be explicitly computed in terms of the creation/annihilation
operators as shown below (where we have introduced the spin index 1 instead of −1 for
notational clarity). 

Sx

Sy

Sz

 =


1√
2
(a†

i1ai0 + a†
i0ai1 + a†

i1
ai0 + a†

i0ai1)

i√
2
(−a†

i1ai0 + a†
i0ai1 + a†

i1
ai0 − a†

i0ai1)

ni1 − ni1

 (5.6)

S2
i = 2ni1ni0 + 2ni0ni1 − 2ni1ni1 + ni1 + 2ni0 + ni1 + n2

i1 + n2
i1 + 2a†

i1a†
i1a2

i0 + 2(a†
i0)

2ai1ai1
(5.7)

Note that most of the terms in the S2
i operator are block-diagonal in the spin subspaces

except for the last two terms which mix the spin components. We can now construct
the mean-field Hamiltonian in the occupation basis,

∣∣n1, n0, n1
〉

resulting in the following
ansatz for the wavefunction.

|Ψ⟩ =
M⊗

i=1

(
∑

n1,n0,n1

fi,n1,n0,n1

∣∣n1, n0, n1
〉)

(5.8)

5.1.1 Mott insulator phase

When the order parameters satisfy Ψ1 = Ψ0 = Ψ1 = 0, the ground state is a Mott insulator.
In this section, we will try to understand the nature of the Mott insulator lobes due to the
introduction of the spin degree of freedom, by considering the Hamiltonian in the limit
t ≪ U.

Hi =
Us

2
(S2

i − 2ni) +
U
2

ni(ni − 1)− µni (5.9)

The ground state would clearly be a Fock state with a fixed total occupation number, ni
such that it is a superposition of spin states (∑σ niσ = ni). However, note that S2

i , Siz and ni
commute with each other. As a result, a better basis for our analysis is the combined spin
basis, |ni; Si, mi⟩ which is defined by the following eigenvalue equations.

Ŝ2
i |ni; Si, mi⟩ = Si(Si + 1) |ni; Si, mi⟩ (5.10)

Ŝiz |ni; Si, mi⟩ = mi |ni; Si, mi⟩ (5.11)
n̂i |ni; Si, mi⟩ = ni |ni; Si, mi⟩ (5.12)

We can then write the ground state energy for the state |n; S, m⟩ as follows.

E(S, n) =
Us

2
(S(S + 1)− 2n) +

U
2

n(n + 1)− µn (5.13)
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Before we can determine the state |n; S, m⟩, we must discuss the constraints on these
quantum numbers. We will loosely follow the arguments presented in Ying (1996)35. To
begin with, we write the form of the spin ladder operators.

S+ = Sx + iSy =
√

2(a†
1a0 + a†

0a1) S− = Sx − iSy =
√

2(a†
0a1 + a†

1a0) (5.14)

Since the spin operators obey the SU(2) commutation relations, [Siα, Siβ] = iϵαβγSiγ, the
ladder structure follows and we have m ∈ {0,±1,±2, · · · ± S}, generating 2S + 1 states for
a given value of n and S. Let us now consider the state |n; S,−S⟩ to determine the allowed
values of S. Applying Sz on this state gives us the following relations:

2n1 = (n − S)− n0 (5.15)
2n1 = (n + S)− n0 (5.16)

This tells us that S ≤ n and further, (n + S) and n0 must both either be even or odd. If we
assume that they are odd, we can expand the state |n; S,−S⟩ in the following way.

|Ψ⟩ = |n; S,−S⟩ = ∑
n0

cn0

∣∣∣∣n0,
n − n0 + S

2
,

n − n0 − S
2

〉
= ∑

n0

cn0 |Ψn0⟩ (5.17)

By construction, we know that S−Ψ = 0. However, note that the first term S− |Ψ1⟩ gives
rise to a state having n0 = 0 since S− ∼ a†

1
a0. No other term arising from S−Ψi for odd i ≥ 3

can generate such a state with n0 = 0. Since the overall result must vanish, we conclude
that c1 = 0. Similarly, by considering the subsequent terms, we can argue that ci = 0 ∀i. As
a result, S− |Ψ⟩ = 0 =⇒ |Ψ⟩ = 0, but we know that |n; S,−S⟩ ̸= 0 so (N + L) cannot be
odd. Such an argument fails when n0 is even, since we can conclude ci = 0 ∀i ≥ 2 but the
lowest order term vanishes under annihilation, so c0 can be non-zero. Thus, we have the
constraint that (n + S) must be even. This means that if n is even, S ∈ {0, 2, 4, . . . , n} and
if n is odd, S ∈ {1, 3, 5, . . . , n}. We will see in the subsequent sections that this constraint
directly affects the ground state and hence the phase diagram.

5.1.2 Superfluid phase

To characterize the superfluid phase, we turn our attention to the set of mean-field parame-
ters which can be grouped like so, Ψ = (Ψ1, Ψ0, Ψ1) =

√
ns(η1, η0, η1), where ns = |Ψ| is

the superfluid density and η⃗ is a normalized spinor. Naturally, when ns does not vanish, we
observe a superfluid phase and can understand its magnetic properties using the average
spin given by ⟨S⃗⟩ = ∑αβ η∗

α J⃗αβηβ. Writing out the components, we get:
⟨Sx⟩

⟨Sy⟩

⟨Sz⟩

 =


√

2(η1η0 + η1η0)

0

η2
1 − η2

1

 (5.18)
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Notice that the y-component of the average spin vanishes. At this point, we must review
our assumption that Ψσ ∈ R. Generally, this is valid because the BHM is invariant under
the U(1) transformation, ai → eiθai and any phase carried by the order parameter, Ψ, can
be shifted onto the operators. However, in the spin-1 case, we would like to set all three
order parameters, Ψσ, to be real.

This creates an issue since the BHM is only invariant under global gauge transformations,
whereas our order parameters might carry different phases for each spin component,
resulting in the transformation aiσ → eiθσ aiσ. It can be seen that the spin-1 BHM is invariant
under such a transformation only if θ1 + θ1 − 2θ0 = mπ where m ∈ Z, precisely due to the
spin mixing components of S2. We can still set Ψσ ∈ R but this manifests in constraining
the spin components of the superfluid strictly to the x − z plane. While this means that we
have lost generality, the physics of the system still remains the same and we will continue
with this assumption for the sake of simplicity.

Getting back to the average spin, a nicer quantity to work with is its magnitude squared.

|⟨S⟩|2 = 2(η1η0 + η−1η0)
2 + (η2

1 − η2
−1)

2

= 2(η2
1η2

0 + η2
−1η2

0 + 2η2
0η1η−1) + η4

1 + η4
−1 − 2η2

1η2
−1

= (1 − η2
0)η

2
0 + (1 − (η2

1 + η2
−1))(η

2
1 + η2

−1) + 4z2η1η−1 + η4
1 + η4

−1 − 2η2
1η2

−1

= η2
0 − η4

0 + η2
1 + η2

−1 − (η2
1 + η2

−1)
2 + 4η2

0η1η−1 + η4
1 + η4

−1 − 2η2
1η2

−1

= 1 − η4
0 + 4η2

0η1η−1 − 4η2
1η2

−1

= (1 − (η2
0 − η1η−1)

2) (5.19)

If we define the singlet operator as Θi = (a2
i0 − 2ai1ai1), we can directly relate its expectation

value to the average spin like so |⟨S⟩|2 = 1 − |⟨Θ⟩|2/n2
s . In the ground state, based on the

sign of Us, the energy is minimized by |⟨S⟩|2 = 0 or |⟨S⟩|2 = 1 corresponding to a ’polar’
or ’ferro’ superfluid respectively34.

5.2 Results

5.2.1 Ferromagnetic interactions (Us < 0)

In this case, the energy is minimized when the net spin of the bosons is maximised. As a
result, the superfluid is of ’ferro’ nature and exhibits average spin |⟨S⟩|2 = 1. Similarly, in
the Mott insulator phase, each site has a net spin of S = N, where N is the number of bosons
occupying the site in that Mott lobe. This is allowed by the constraint we obtained in Sec.
5.1.1. As a result, there is no qualitative difference in the phase boundaries as compared to
the spinless case. Note that whenever we mention ’spin’, we mean the quantum number
S and not the projection ms. As a result, in the absence of an external magnetic field, the
system is actually magnetically unordered. We see that the observations discussed here are
in agreement with Fig. 5.1.
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(a) Average spin, ⟨S⟩ (b) Net spin eigenvalue, ⟨S2⟩

(c) Phase diagram

Figure 5.1: Ferromagnetic interactions, Us = −0.08U
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5.2.2 Anti-ferromagnetic interactions (Us > 0)

In this case, the energy is minimized when the net spin of the bosons is minimized. As a
result, the superfluid is of ’polar’ nature and exhibits average spin |⟨S⟩|2 = 0. Things get
interesting in the Mott insulator phase, however, since the constraint from Sec. 5.1.1 plays
a bigger role now as we can see in Fig. 5.2.

The Mott lobes with even N is described by the state |N; 0, 0⟩ with N/2 pairs of spin singlets,
whereas the Mott lobes with odd N is described by the state |N; 1, m⟩ such that there is one
boson that cannot form a singlet. This has a direct effect on the phase boundaries since
singlet formation stabilizes the Mott insulator against the superfluid transition34. As a
result, there is significant difference in the phase boundary of this system as compared
to the spinless case. Further, note that the SF-MI transition is generally second order in
nature. However, in this case, only the SF-(odd) MI transitions are second order, while the
SF-(even) MI transitions are first order in nature.

5.3 Effective spin-spin interactions

While the mean-field decoupling allowed us to study the effect of the spin degree of
freedom in the ordered phases of the BHM, it also threw away any correlations across the
lattice. In the pure Mott insulator limit when t ≪ U, such a treatment is accurate since
the orientations of spins in different lattice sites are genuinely uncorrelated. However,
as we introduce finite hopping, the bosons can mediate an interaction between the spins
on different sites, thus introducing spin-spin correlations that can give rise to singlet and
nematic ordering within the Mott lobes.

In general, one can write an effective spin Hamiltonian for such a case34.

Heff = ∑
⟨i,j⟩

(−J(0)i,j − J(1)i,j Si · Sj − J(2)i,j (Si · Sj)
2) (5.20)

where the coefficients are determined by a perturbative treatment of the hopping term.
However, we will not pursue this exercise here since the phenomenon of mediation is
complicated by the presence of other terms in the spin-1 BHM. Instead, we study a simpler
situation that demonstrates mediation more clearly in the next chapter.
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(a) Average spin, ⟨S⟩ (b) Net spin eigenvalue, ⟨S2⟩

(c) Phase diagram

Figure 5.2: Anti-ferromagnetic interaction, Us = 0.08U
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6 Boson-mediated interactions

In this chapter, we consider a simple model of non-interacting spin-1 bosons on a lattice
coupled with a lattice of localized spin-1 bosonic ’impurities’. This can be seen as analogue
of the fermionic lattice kondo model. Our goal is to explore the nature boson-mediated
interactions.

H = −t ∑
⟨i,j⟩,σ

a†
iσajσ − Jh ∑

i
Si · si (6.1)

This model can be thought of arising from a more general one involving coupling between
the lattice and impurity bosons, in the low-energy limit of single particle occupation in the
impurity sites. As a result, the localized spins can be treated as classical spins such that
|S⃗i| = 1, parametrized like so S⃗i = (cos ϕi sin θi, sin ϕi sin θi, cos θi). Note that the localized
spins do not directly interact with each other in this system.

6.1 Strong-coupling limit

Figure 6.1: Conduction bosons (red) and impurity bosons (pink) confined in a lattice

Let us consider the limit Jh ≫ t wherein the bosons have a strong tendency to align with
the classical spins. This motivates us to change our basis by applying a site-dependant
SU(2) rotation (see Appendix B).

46
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ai,1
ai,0
ai,1

 =


cos2 θi

2 − 1√
2

sin θie−iϕi sin2 θi
2 e−2iϕi

1√
2

sin θieiϕi cos θi − 1√
2

sin θie−iϕi

sin2 θi
2 e2iϕi 1√

2
sin θieiϕi cos2 θi

2


di,1

di,0
di,1

 (6.2)

The new operator, di,σ, annihilates a boson at site i with the spin σ ∈ [1, 0, 1] such that the
quantization axis is now parallel to the localized spin. The transformed Hamiltonian can
then be written as follows.

H = ∑
⟨i,j⟩σσ′

gσσ′
ij d†

iσdjσ′

︸ ︷︷ ︸
V

− JH ∑
i
(ni,1 − ni,1)︸ ︷︷ ︸

H0

(6.3)

where ni,σ are the defined by d†
i,σdi,σ. Note that this transformation effectively diagonalizes

the spin coupling term, which allows us to treat the hopping term in a perturbative manner.
Although the elements of the new hopping matrix are not particularly insightful, they are
listed below (as a multiple of ti,j) for completeness.

g1,1
i,j = cos2 θi

2
cos2 θj

2
+

1
2

e−i(ϕi−ϕj) sin θi sin θj + e−2i(ϕi−ϕj) sin2 θi

2
sin2 θj

2

g1,0
i,j =

1√
2

e−iϕi sin θi cos θj −
1√
2

e−iϕj cos2 θi

2
sin θj +

1√
2

e−i(2ϕi−ϕj) sin2 θi

2
sin θj

g1,1
i,j = e−2iϕi cos2 θj

2
sin2 θi

2
+ e−2iϕj cos2 θi

2
sin2 θj

2
− 1

2
e−i(ϕi+ϕj) sin θi sin θj

g0,0
i,j = cos θi cos θj +

1
2

ei(ϕi−ϕj) sin θi sin θj +
1
2

e−i(ϕi−ϕj) sin θi sin θj

g0,1
i,j =

1√
2

e−iϕi cos2 θj

2
sin θi −

1√
2

e−iϕj cos θi sin θj −
1√
2

e−i(−ϕi+2ϕj) sin θi sin2 θj

2

g1,1
i,j = cos2 θi

2
cos2 θj

2
+

1
2

ei(ϕi−ϕj) sin θi sin θj + e2i(ϕi−ϕj) sin2 θi

2
sin2 θj

2

The remaining elements can be computed by using the property gσ,σ′

i,j = (gσ′,σ
j,i )∗. These

coefficients can be understood as the spin-spin coupling resulting in an effective (reduced)
hopping term. Let us now consider a simple case of unit occupation on the lattice, and
further, we restrict the analysis to a two-site problem. The ground state for the unperturbed
system is then triply degenerate.

|0, 2⟩ = d†
2,1d†

2,1 |0⟩ |2, 0⟩ = d†
1,1d†

1,1 |0⟩ |1, 1⟩ = d†
2,1d†

1,1 |0⟩

with energy E(0)
0 = −2Jh. Since the ground state is degenerate, we must diagonalize V

within this subspace to calculate the first order correction to the ground state energy. The
details to compute the vacuum expectation values can be found in Appendix C. We can
then write the matrix elements of V in this subspace as follows.〈

l, l′
∣∣V
∣∣m, m′〉 = g1,1

m′l′δlm + g1,1
m′lδl′m + g1,1

ml′δlm′ + g1,1
ml δl′m′ (6.4)
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V = 2 Re


g1,1

1,1 + g1,1
2,2 2g1,1

1,2 2g1,1
2,1

2g1,1
1,2 4t1,1

1,1 0

2g1,1
2,1 0 4g1,1

2,2

 = 4


0 Re(g1,1

1,2) Re((g1,1
1,2)

∗)

Re(g1,1
1,2) 0 0

Re((g1,1
1,2)

∗) 0 0

 (6.5)

The smallest eigenvalue is the first order correction, E(1)
0 = −4

√
2 Re(g1,1

1,2), giving us the
following expression.

E(1)
0 (θi, ϕi, θj, ϕi) = −4

√
2ti,j

[
cos2 θi

2
cos2 θj

2
+

1
2

cos
(
ϕi − ϕj

)
sin θi sin θj

+ cos
(
2(ϕi − ϕj)

)
sin2 θi

2
sin2 θj

2

]
(6.6)

Note that we have ’integrated out’ the bosonic part of the system and ended up with an
expression for the corrected energy purely in terms of the components of the localized spins.
Thus, we have Heff(θi, ϕi, θj, ϕj) = E(1)

0 (θi, ϕi, θj, ϕj) + E(0)
0 as an effective Hamiltonian

governing the physics of the localized spins. We can also clearly see that the two spin
variables are coupled in a non-trivial manner, thereby acting as an effective interaction that
is mediated by the lattice bosons!

Such a claim can be seen more clearly if we recast the effective Hamiltonian by inverting
the spherical coordinates to the (cartesian) components of the localized spins.

Sx
i = cos ϕi sin θi Sy

i = sin ϕi sin θi Sz
i = cos θi (6.7)

Unfortunately, it turns out that the first order correction cannot be neatly inverted in this
manner. However, such a structure does emerge in the second order correction which
roughly has the following form:

∑
...
(...) ·

|gσ,σ′

i,j |2

E − E0

Below is the matrix of these mod squared values that have been inverted in terms of the
cartesian spin components.

|gσσ′
ij |2 =

t2
i,j

4


(1 + S⃗i · S⃗j)

2 2(1 − (S⃗i · S⃗j)
2) (1 − S⃗i · S⃗j)

2

2(1 − (S⃗i · S⃗j)
2) 4(S⃗i · S⃗j)

2 2(1 − (S⃗i · S⃗j)
2)

(1 − S⃗i · S⃗j)
2 2(1 − (S⃗i · S⃗j)

2) (1 + S⃗i · S⃗j)
2

 (6.8)

We can clearly see a much nicer interpretation of the mediated interaction since these
represent Heisenberg-like couplings between the localized spins. However, we do not
pursue the complete calculation since the leading order correction is non-zero.
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7 Going beyond the Mean Field

All the analysis in this thesis so far have been restricted to the mean-field level. While this
is sufficient for qualitative results, it generates very poor quantitative estimates of phase
boundaries. In some cases, it can result in entirely incorrect prediction of the existence of
certain phases as well. This motivates us to look for better numerical techniques that can
allow us to study the system beyond the mean-field level. In this chapter, we will discuss
some of these techniques and the difficulties that arise due to the complexity involved in
them.

7.1 Variational Monte Carlo

One of the issues with exact diagonalization is that the basis set scales exponentially with
the system size. As a result, the memory required simply to represent the wavefunction on
a computer quickly grows beyond bounds. This motivates us to look for ways to exploit
structure in the wavefunction and find a more compact representation.

The standard scheme in such a case is to guess an ansatz for the wavefunction by lever-
aging the variational principle. The ground state can then be obtained by tuning the free
parameters to minimize the energy.

Ψ ≡ Ψ{αi}

minαi ⟨Ψ{αi}| H |Ψ{αi}⟩ ≥ E0

However, the accuracy of the results strongly depend on how well the ansatz approximates
the true wave-function. For example, the mean-field approach effectively introduces a
site-decoupled ansatz which is a poor one as it ignores all long-range correlations. On the
other hand, we have more sophisticated approaches like tensor networks and DMRG36,37

that exploit entanglement structure to construct an ansatz.
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Figure 7.1: Pictorial representation of the neural network

We take a different approach here by utilizing a universal function approximator instead of
any particular form of ansatz. In principle, a feed-forward neural network with sufficient
hidden layers and nodes is capable of serving this purpose38 such that the variational
parameters are simply the network weights. Let us now consider the wavefunction of the
Bose-Hubbard model with N particles and M lattice sites in the occupation basis.

|Ψ⟩ = ∑
∑i ni=N

ψ(n1, n2, ..., nM) |n1, n2, . . . , nM⟩ = ∑ ψ(n) |n⟩ (7.1)

The input layer of the network will have M nodes, such that the basis state |n⟩ ≡
|n1, n2, . . . , nM⟩ can be set as an input as shown in Fig. 7.1. The values of the nodes
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on the hidden layers are computed as usual, using a hyperbolic tangent activation function:

u(0)
j = nj ; u(i+1)

m =
N(i)

H

∑
k=1

W(i+1)
mk tanh u(i)

k (n) + h(i+1)
m (7.2)

The output layer will have 2 nodes such that we can get the co-efficient of the input basis
state like so:

ψ(n) = exp
[
uNl

1 (n) + iuNl
2 (n)

]
(7.3)

The wavefunction can now be represented in this compact neural network once we tune
the parameters, {Wn, hn}|Nl

1 by minimizing the energy. Generally, the expectation value of
an operator, Â is calculated using the expression:

⟨A⟩ = ∑n,n′ ψ∗(n) ⟨n| Â |n′⟩ψ(n′)

∑n |ψ(n)|2
(7.4)

However, if we compute every element of the sum by retrieving the coefficients from
our neural network, we effectively lose the benefit of having a compact representation.
Instead, we utilize the standard Monte Carlo scheme, where the basis states are importance
sampled, using the Metropolis algorithm. Since our goal is to sample states {n} following
the distribution |ψ(n)|2/ ∑n′ |ψ(n′)|2, we accept the proposal n1 → n2 with probability
|ψ(n2)|2/|ψ(n1)|2 and compute the expectation value as follows.〈

⟨n| Ĥ |n⟩ ψ(n′)

ψ(n)

〉
M

≡ ⟨H⟩M (7.5)

where ⟨. . . ⟩M indicates an average over the metropolis sampling of n. Training the network
weights to represent the wavefunction requires us to perform a gradient descent.

w → w − γ
∂⟨Ĥ⟩M

∂w
(7.6)

where, γ is the learning rate, and the gradient can be computed using the following
expression.

∂⟨Ĥ⟩
∂w

≈ 2Re(⟨OwĤ⟩M − ⟨O∗
w⟩M⟨Ĥ⟩M) Ow(n) =

1
ψ(n)

∂ψ(n)
∂w

(7.7)

Further details can be found in Saito (2017)39. Our implementation can be found on github,
however, in its current state it is unusable due to inefficient computation of the gradient.
This leads to extremely large runtimes for even small system sizes. Further, a naive gradient
descent approach gets trapped in local minima even for the Bose-Hubbard model39. As
a result, this line of exploration was not pursued further. It is worth noting, however,
that there are larger and more mature projects that implement various machine learning
techniques to solve many body problems, such as NetKet40.

https://github.com/20akshay00/MSThesis
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7.2 Stochastic Series Expansion

We now turn to a class of extremely powerful methods that are broadly classified as Quan-
tum Monte Carlo techniques. There are countless variations and flavors41,42 depending
on the specifics of the system under consideration, but they all share the trait of utilizing
Monte Carlo sampling in some capacity to solve quantum problems. We will focus on one
flavor in particular, the stochastic series expansion (SSE)43. This section will largely follow
the discussion presented in Sandvik’s lecture notes44.

Generally, the goal of these methods is to compute the partition function and hence the
thermal expectation values of various observables of interest. We begin by performing a
Taylor expansion of the exponent around β = 0 and taking the trace with respect to an
appropriate basis set {α}.

Z = Tr
{

e−βH
}
= Tr

{
∞

∑
n=0

(−β)n

n!
Hn

}
= ∑

α

∞

∑
n=0

(−β)n

n!
⟨α| Hn |α⟩ (7.8)

We can view the above sum as a Monte Carlo sampling of the configurations, (|α⟩ , n) with
the weight, W(|α⟩ , n) = (−β)n

n! ⟨α| Hn |α⟩. However, there is a glaring problem, that is the
infinite sum over the expansion order, n. At first sight, such a situation seems impossible
to deal with in a numerical algorithm. However, a solution presents itself if we analyze the
nature of the energy and specific heat capacity calculated through this procedure.

⟨H⟩ = 1
Z

Tr
{

He−βH
}

=
1
Z ∑

α

∞

∑
n=0

(−β)n

n!
⟨α| Hn+1 |α⟩

= − 1
Z ∑

α

∞

∑
n=1

n
β
· (−β)n

n!
⟨α| Hn |α⟩ = ⟨n⟩

β
(7.9)

Similarly, we get ⟨H2⟩ = ⟨n(n − 1)⟩/β2. The expression for the specific heat can then be
computed as follows.

Cv =
⟨H2⟩ − ⟨H⟩2

T2 = ⟨n2⟩ − ⟨n⟩2 − ⟨n⟩ (7.10)

Generally, the specific heat vanishes as T → 0 for quantum systems, so we can write
σn = ⟨n2⟩ − ⟨n⟩2 = ⟨n⟩. Thus, we have ⟨n⟩ ∼ Nβ and σn ∼

√
Nβ where N is the system

size which is introduced since the energy roughly scales with the N. This tells us that the
distribution of n that contributes to the sum is quite narrow and we can simply introduce a
cut-off length L in our algorithm (that must be adjusted as the simulation progresses).
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Figure 7.2: Distribution of expansion order in SSE

At this point, we note that computing the quantity ⟨α| H |α⟩ is generally non trivial, and so
we introduce an important idea that makes the SSE tractable. Generally, lattice Hamiltoni-
ans can be broken down as H = −∑a,b Ha,b, where b indicates the ”bond” connecting two
sites i(b) and j(b), and a indicates the class of the operator. Any power of the Hamiltonian
can then be written in terms of a sum over ’operator strings’ {Hab}.

(−H)n = ∑
{Hab}

n

∏
p=1

Ha(p),b(p) (7.11)

Putting this together with the fixed length scheme that was motivated above, we can write
the partition function in the typical monte carlo format.

Z = ∑
α,Hab

βn(L − n)!
L!

⟨α|
n

∏
p=1

Ha(p),b(p) |α⟩ ↔ Z = ∑
Ci

W(Ci) (7.12)

⟨O⟩ = 1
Z ∑

α,Hab

βn(L − n)!
L!

⟨α|O
n

∏
p=1

Ha(p),b(p) |α⟩ ↔ ⟨A⟩ =
∑Ci

O(Ci)W(Ci)

∑Ci
W(Ci)

(7.13)

We have now introduced an abstract configuration which is a 2-tuple consisting of |α⟩, an
element of the basis set, and {Hab} which is a string of L bond operators. In order to work
with the fixed-length scheme, we have also introduced H0,0 = I to pad the operator string,
such that each string consists of n non-identity bond operators and (L − n) identities, thus
sampling the expansion orders n ∈ [1, L].
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The problem has now reduced to ergodically sampling this configuration space according
to their weights (which can be computed with ease due to the bond decomposition). An
issue arises when the weights are not positive, in which case they cannot be interpreted as
probabilities, thus giving rise to the infamous sign problem45. This is usually the case for
fermionic systems and systems with non-bipartite lattices geometries.

7.2.1 S=1/2 Heisenberg model

Let us now consider the spin-1/2 Heisenberg model with anti-ferromagnetic interactions
(J > 0) on a square lattice. We choose this particular example since it is quite illustrative of
the SSE technique while also having some relevance to the Bose-Hubbard model that we
will discuss at the end of the chapter.

H = J ∑
⟨i,j⟩

Si · Sj (7.14)

A natural basis set to use in our expansion is the Sz-basis,
∣∣Sz

1, Sz
2, · · · , Sz

N
〉
. We can now

rewrite the Hamiltonian as a sum of bond operators:

H1,b =
1
4
− Sz

i(b)S
z
j(b) H2,b =

1
2
(S+

i(b)S
−
j(b) + S−

i(b)S
+
j(b)) (7.15)

H = J
B

∑
b=1

[Sz
i(b)S

z
j(b) +

1
2
(S+

i(b)S
−
j(b) + S−

i(b)S
+
j(b))] = −J

NB

∑
b=1

(H1,b − H2,b) +
JNb

4
(7.16)

Here, we have introduced two ’classes’ of bond operators, that is, those that are diagonal
(H1,b) and off-diagonal (H2,b) in the Sz-basis. There is also an important restriction on the
choice of the bond operators Ha,b, namely, that they must be non-branching, i.e, Ha,b |αi⟩ =
Ci,j

a,b

∣∣αj
〉

where |αi⟩ and
∣∣αj
〉

are single elements of the chosen basis set. This implies that
each configuration can equivalently be understood as a periodic sequence of basis elements
(due to the cyclic nature of the trace).

C ≡ |α0⟩ → |α1⟩ → · · · → |αL−1⟩ → |α0⟩ |αi⟩ =
i

∏
p=1

Ha(p),b(p) |α0⟩ (7.17)

Notice that we have also introduced a constant energy shift in order to force the matrix
elements, and hence the configuration weights to be positive. Since the bond operators
only act on two sites, we can list out all of these matrix elements:〈

↑i(b)↓j(b)

∣∣∣H1,b

∣∣∣↑i(b)↓j(b)

〉
=

1
2

〈
↓i(b)↑j(b)

∣∣∣H2,b

∣∣∣↑i(b)↓j(b)

〉
=

1
2〈

↓i(b)↑j(b)

∣∣∣H1,b

∣∣∣↓i(b)↑j(b)

〉
=

1
2

〈
↑i(b)↓j(b)

∣∣∣H2,b

∣∣∣↓i(b)↑j(b)

〉
=

1
2

Note that any bond operator can only act on anti-parallel spins, since all other configu-
rations have a vanishing matrix element. Further, we see that not only are the non-zero



Chapter 7 – Going beyond the Mean Field 55

matrix elements positive but they are also equal. This greatly simplifies the algorithm,
since the weight of any valid configuration is simply computed as follows.

W(α, {Ha,b}) =
(

β

2

)n (L − n)!
L!

(7.18)

The challenge now is to come up with a sampling scheme that generates operator strings
that samples such periodic sequences of basis elements. There are usually three types of
updates that are required to maintain ergodicity:

• Diagonal update: This changes n, the number of non-identity bond operators in the
operator string. Such an update simply replaces an identity operator with a diagonal
one (or vice versa) if the spin states it acts on is anti-parallel.

• Off-diagonal update: Off-diagonal operators cannot be added or removed individ-
ually as was the case with the diagonal operators, since the periodicity of the basis
state has to be preserved. As a result, one has to manipulate pairs of off-diagonal
operators acting on the same sites, however such an update scheme is quite inefficient.
Instead, another approach known as the operator loop update46 is used wherein a
loop is constructed across the entire configuration, connecting the spin sites at the base
of several operators, which are then flipped simultaneously in an analogous manner
to the cluster updates in the Ising model. This scheme is related to a broader class of
loop algorithms47 applicable to general quantum monte carlo methods.

• Spin-flip update: Finally, if a particular spin is not acted upon by any operators, it
can be flipped to sample a different basis state |α⟩. However, this update is not strictly
required nor efficient since the off-diagonal updates already sample the basis states as
well.

The probability of accepting these updates can then be computed by means of the usual
constraint arising from detailed balance of the markov chain of configurations.

Paccept(A → B) = min
(

W(B)Pselect(B → A)

W(A)Pselect(A → B)
, 1
)

(7.19)

The interested reader may find the details of the sampling scheme as well as an ingenious
way to visualize and implement the SSE in Sandvik’s lecture notes44.

Once we are able to sample the configurations ergodically, diagonal observables can be
computed easily as they do not alter the sequence of basis states. On the other hand,
off-diagonal observables are quite hard to compute, in general. However, any off-diagonal
operator, H2,b, which is a part of the Hamiltonian is found to be related to the expectation
value of the number of occurences of the operator in the operator string44. For example,
this is what we found for the energy in Eq. (7.9). Luckily, most of the observables that are
required for our purposes fall within these two categories.
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7.2.2 Results

We have performed the SSE for various lattice sizes and temperatures, recording n = 10000
samples for computing each quantity. The results are shown as in Fig. 7.3. Although there
are strong finite-size effects in most of the plots, we can see for L = 48 that the (staggered)
magnetization seems to undergo a transition somewhere between J ·T ∈ [0.2, 0.6] indicating
a shift from an anti-ferromagnet to a paramagnet. Peculiarly, the magnetic susceptibility χ
seems to also have a continuous transition around the same region instead of a divergence
as expected from a second order transition. On the other hand, we have some hint of
divergence from the specific heat plot around J · T ≈ 0.6.

Figure 7.3: Tracking various quantities calculated using SSE

In order to extract a better estimate of the critical temperature by dealing with the finite
size effects, we calculate the Binder cumulant for various lattice sizes in Fig. 7.4.

UL = 1 − ⟨M4⟩L

3⟨M2⟩2
L

(7.20)
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Figure 7.4: Binder cumulant curves for various lattice sizes

We see that the curves roughly intersect at J · T ≈ 0.22. As it stands, these results signifi-
cantly contradict with each other and we have not been able to resolve this so far.

7.2.3 Mapping to bosons

The discussion so far seems rather unrelated to the rest of the thesis, however, a closer look
at the Heisenberg Hamiltonian reveals that this is not the case:

H = J ∑
⟨i,j⟩

S⃗i · S⃗j = J ∑
⟨i,j⟩

[
1
2
(S+

i S−
j + S−

i S+
j ) + Sz

i Sz
j

]
(7.21)

Consider the mapping S+
i → a†

i , S−
i → ai and Sz

i = ni − 1/2. The Hamiltonian is then
oddly reminiscent of the extended Bose-Hubbard model.

H =
J
2 ∑
⟨i,j⟩

(a†
i aj + a†

j ai) + J ∑
⟨i,j⟩

ninj (7.22)

where t = −J/2 and V = J. Note that the on-site interaction term is missing. This is
because we have effectively mapped classical spin-1/2 particles to hardcore bosons, i.e, in
the limit of U → ∞ s.t. ⟨ni⟩ ∈ {0, 1}. Loosely we can think of states having ⟨Sz⟩ = −1/2
and ⟨Sz⟩ = 1/2 corresponding to ⟨n⟩ = 0 and ⟨n⟩ = 1 boson occupation, respectively.
Note that the a† (a) operators here are not general bosonic operators, but specifically ones
that create (annihilate) hard-core bosons.
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Figure 7.5: Mapping hard-core bosons to classical spin-1/2 particles

In the most general case, we can map a spin-S anisotropic XXZ model to a semi-hardcore
extended Bose-Hubbard model with maximum occupation of 2S.

H = Jx ∑
⟨i,j⟩

(S+
i S−

j + S−
i S+

j ) + Jz ∑
⟨i,j⟩

Sz
i Sz

j + hz ∑
i

Sz
i

H = −t ∑
⟨i,j⟩

(a†
i aj + a†

j ai) + V ∑
⟨i,j⟩

ninj − µ ∑
i

ni

t ≡ Jx

V ≡ Jz

µ ≡ Jz − hz

However, in such a case, there are many more non-zero matrix elements that exist which
are also not necessarily equal in magnitude. As a result, the operator loop update has to
be redesigned since there is no unique deterministic loop that can be constructed for a
given configuration. This can be remedied by utilizing the directed loop algorithm48 which
applies to the most general situations.

Our implementation of the SSE for the isotropic spin-1/2 Heisenberg model can be found
on github. Although we intended to implement the directed loop algorithm as well, we
were unable to do so within the constraint of the thesis and will not discuss its details here.

7.3 World-line QMC

While the SSE is quite straightforward conceptually, it can efficiently generate samples only
when the diagonal and off-diagonal terms are of comparable magnitude44 (t ∼ U, t ∼ V
for e.g.). This is generally satisfied for spin systems, however, the interesting regions in
bosonic systems occur for t ≪ U, t ≪ V. As a result, the SSE sampling scheme is not
the best choice for our purposes. Instead, we turn to a related class of algorithms loosely
termed as world-line QMC49. We first discuss the discrete formulation.

Z = Tr
{

e−βH
}
= Tr

{
L

∏
l=1

e−∆τH

}
∆τ = β/L (7.23)

Instead of expanding the exponential as a Taylor series, we utilize a Trotter decomposition
to cast the sum in terms of the usual monte carlo language by inserting completeness
relations of our prefered basis set, {α}. We then have:

Z = ∑
α0

∑
α1

· · · ∑
αL−1

⟨α0| e−∆τH |αL−1⟩ . . . ⟨α2| e−∆τH |α1⟩ ⟨α1| e−∆τH |α0⟩ (7.24)

https://github.com/20akshay00/MSThesis
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Z ≈ ∑
{α}

⟨α0| 1 − ∆τH |αL−1⟩ . . . ⟨α2| 1 − ∆τH |α1⟩ ⟨α1| 1 − ∆τH |α0⟩ (7.25)

where, the error falls of as O(∆τ) and vanishes in the limit ∆τ → 0. The configurations
here are quite similar to the idea we introduced in the SSE involving a cyclic sequence of
basis states. While the diagonal parts of H leave the basis state unaltered, the off-diagonal
ones do not. Effectively, we can view this procedure as having introduced a new dimension,
∆τ to our system.

In principle, since the results of the above method are only exact when ∆τ → 0, we must
perform the simulation for various values of ∆τ and extrapolate them to get the exact
results. However, it turns out that such a technique is unnecessary as we can, infact, take
the limit exactly to formulate a continuous time world-line approach49.

Z = Tr
{

e−βH
}
= Tr

{
T eβH0 exp

{
−
∫ β

0
dτV(τ)

}}
(7.26)

where, V(τ) = eτH0Ve−τH0 . The exponential can be expanded iteratively like so:

Z = Tr

{
e−βH0

∞

∑
n=0

∫ β

0
dτ1

∫ τ1

0
dτ2· · ·

∫ τn−1

0
V(τ1) . . . V(τn)

}
(7.27)

By inserting basis sets between the elements, this formulation becomes quite similar to
the discrete case, except that the dτ dimension is now continuous. However, a naive
sampling of these configurations would result in critical slowing down near the phase
boundaries (among other issues)50. There exists an analog of the directed loop updates for
the continuous-time world-line approach, called the worm algorithm51–53 which solves this
issue. We intend to utilize this technique in our future studies to obtain more quantitative
results.
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8 Summary & Future prospects

We started by setting up the formalism to describe the physics of interacting bosons in
a periodic lattice. We then proceeded to generate the ground state phase diagram for
bosons with contact interactions and successfully extracted the phase boundary for the
Mott insulator to superfluid transition. This was done numerically using Mean-field and
Cluster Mean-field techniques.

Upon deeming the latter to be impractical for our requirements, we moved on to study the
ground state phases exhibited in the presence of long-range interactions at a mean-field
level. As a result, we observed extended regions of two new phases, density waves and
supersolids for any non-zero magnitude of the strength of nearest-neighbour interactions.
We then introduced a spin-degree of freedom and analyzed its effect on the nature of
the Mott insulator to superfluid transition. This directly led to a simple analysis of the
phenomenon of mediation through bosons to induce effective interactions between non-
interacting particles.

Finally, we presented a brief review of Variational QMC and Stochastic Series Expansion to
study the Bose-Hubbard model beyond the mean-field level. While the basic framework
was implemented and initial results were obtained, this line of work is still at an early stage
and did not generate tangible insight. In the future, we plan to corroborate and extend the
results obtained in this thesis using the state-of-the-art worm algorithm to study the finite
temperature physics of the Bose-Hubbard model.

60



APPENDIX

A Implementation details

A.1 Exact Diagonalization

The details to implement exact diagonalization for the canonical ensemble (CE) is described
in great detail in Zhang et. al. (2010)54. We will instead discuss a scheme to extend it to
the grand canonical ensemble (GCE) as is required to implement the cluster mean field
approximation.

Once we have written a function to compute the Hamiltonian H(N, L) for a system of
N bosons on L lattice sites, the GCE Hamiltonian is simply given by the direct sum
HGCE = ⊕∞

N=1H(N, L). For numerical feasibility, we will set an upper bound on the
particle number, N ≤ Nmax. This effectively means that HGCE can be constructed as a block
diagonal matrix using the set of CE Hamiltonians, {H(N, L)}|Nmax

N=1 , since ĤBHM commutes
with N̂ = ∑i n̂i. While the scheme outlined above is perfectly valid, we will also describe a
different approach due to its similarity with the implementation rrquired for the mean-field
approximation.

Consider the local annihilation operator, ãi, on a particlar site i. Given a maximum particle
occupation of Nmax, we can write the operator in the local occupation basis {ni} as a sparse
matrix with {

√
1,
√

2, . . . ,
√

Nmax} as the lower off-diagonal. We can then construct ã†
i as

the conjugate transpose and ñi as ã†
i ãi. Note that the bosonic commutation relations imply

a tensor product structure for the combined space of multiple bosonic particles (which is
not the case for fermions). As a result, we can construct the global/lattice operators, Oi
using the local operators Õi as follows.

Oi = I ⊗ · · · ⊗ I︸ ︷︷ ︸
(i−1) times

⊗Õi ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
(L−i) times

(A.1)

The GCE Hamiltonian can then be easily constructed using the constituent lattice operators
ai, a†

i and ni.

A closer look reveals that the two schemes differ only in the choice of basis that we have
utilized to construct the Hamiltonian. The first case uses a direct sum of basis sets of each
fixed particle number subspace, |Ψ⟩ = ⊕Nmax

N=1 |Ψ(N, L)⟩, whereas the second case uses a
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tensor product of the local occupation basis, |Ψ′⟩ = ⊗L
k=1 |Ψ′(Nmax, k)⟩.

A.2 Mean field theory

A.2.1 Bose Hubbard model

In this case, we simply have to construct the single-site Hamiltonian in Eq. (3.13) given a
maximum particle occupation of Nmax. Since we are forced to work with the GCE within
this mean-field decoupling, we note that we have already constructed the required local
site operators as discussed in Sec. A.1. The local Hamiltonian is then easily constructed
and the mean-field parameter is determined self-consistently using fixed point iteration. A
combination of absolute and relative tolerances are used to set the convergence limit for the
self-consistency loop, i.e, the condition is as follows; (x(n+1) − x(n)) ≤ ϵatol + ϵrtol ∗ x(n).

A.2.2 Extended Bose Hubbard model

In this case, we have to construct the Hamiltonian over a unit cell of lattice sites as shown
in Eq. (4.6). The unit cell operators can be constructed using the tensor product structure
discussed in Sec. A.1 except that we use the number of sites in the unit cell, LUC, instead
of the total number of lattice sites, L. The Hamiltonian can then be constructed for an
arbitrary unit cell by taking the connectivity matrix as an input and using the relation in
Eq. (4.7) to build the mean-field decoupled terms. The non-linearity introduced by the unit
cell structure result in convergence issues during the self-consistency procedure. This has
been discussed in depth in Sec. 4.3.

A.2.3 Spin-1 Bose Hubbard model

This case is quite similar to the Bose Hubbard model, however, we must construct three
kinds of creation/annihilation operators corresponding to each spin projection, σ ∈
{1, 0, 1}. Note that we have an important constraint to consider, namely, that ∑σ niσ ≤ Nmax
on each lattice site. This can be enforced by enumerating the Fock-space basis set for a
lattice with 3 sites and N bosons such that N ≤ Nmax. The procedure is the same as the one
used in constructing the CE Hamiltonian for exact diagonalization in Sec. A.1.

While it is tempting instead to utilize a tensor product structure as in the previous section,
it becomes cumbersome since we require ∑σ niσ ≤ Nmax instead of the naturally imposed
condition, niσ ≤ Nmax. The second case would effectively result in a maximum site occupa-
tion of 3Nmax, however, it only takes into account the lower energy states since each spin
state occupation cannot exceed Nmax. As a result, the tensor product technique would not
enumerate the entire basis set consistently. Surprisingly, the phase boundary predicted by
this method still matches the true result, although the nature of the phases are altered (for
e.g. the net spin in Mott insulator lobes are capped at Nmax instead of 3Nmax).
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A.3 Code repository

All code used in this project was written in Julia 1.855 and can be found at https://github.
com/20akshay00/MSThesis. All figures and diagrams were generated using Plots.jl56 and
Luxor.jl. The following packages were utilized in varying capacities for implementing the
numerical techniques: Optim.jl57, FixedPoint.jl and KrylovKit.jl.

https://julialang.org/
https://github.com/20akshay00/MSThesis
https://github.com/20akshay00/MSThesis
https://github.com/JuliaPlots/Plots.jl
https://github.com/JuliaGraphics/Luxor.jl
https://github.com/JuliaNLSolvers/Optim.jl
https://github.com/francescoalemanno/FixedPoint.jl
https://github.com/Jutho/KrylovKit.jl


APPENDIX

B Diagonalizing spin interactions

Consider the following hamiltonian for a spin-1/2 particle.

H = S⃗ · σ⃗ =

(
cos θ sin θeiϕ

sin θeiϕ − cos θ

)
(B.1)

where S ≡ (cos ϕ sin θ, sin ϕ sin θ, cos θ) is a classical spin with |S| = 1.

It is easily seen that the hamiltonian can be diagonalized by the following unitary matrix.

U =

(
cos θ

2 − sin θ
2 e−iϕ

sin θ
2 eiϕ cos θ

2

)
(B.2)

Generally such a matrix is only unique upto a permutation and scaling of the columns.
We would like to find a simple scheme to find such a matrix for systems with spin > 1/2
without having to compute the eigenvectors first. Thinking about this procedure from a
different perspective, we simply want to find a matrix that rotates the spin quantization
axis from ẑ to align with S⃗.

Figure B.1: Rotating the quantization axis
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This can be achieved by rotating the system by an angle of θ about the axis n̂ = ẑ × S⃗ =
(− sin ϕ, cos ϕ, 0). For a spin-1/2 particle, the rotation matrix is given as follows.

Rn⃗(α) = exp
{
−α

2
n⃗ · σ⃗

}
= I cos

α

2
+ i(n̂ · σ⃗) sin

α

2
(B.3)

For our choice of rotation axis, this gives us the following matrix which is exactly what we
found earlier in Eq. (B.2)!

U =

(
cos α

2 + inz sin α
2 i sin α

2 (nx − iny)
i sin α

2 (nx + iny) cos α
2 − inz sin α

2

)
=

(
cos θ

2 − sin θ
2 e−iϕ

sin θ
2 eiϕ cos θ

2

)
(B.4)

Similarly, let us now consider the same hamiltonian in Eq. B.1 for a spin-1 particle.

H = S⃗ · J⃗ =


cos θ 1√

2
sin θe−iϕ 0

1√
2

sin θeiϕ 0 1√
2

sin θe−iϕ

0 1√
2

sin θeiϕ − cos θ

 (B.5)

where J⃗ are the spin-1 matrices. The rotation matrix can then be written as follows58.

Rn⃗(α) = exp
{
−iαn̂ · J⃗

}
= I + in̂ · J⃗ sin α + (n̂ · J⃗)2(cos α − 1) (B.6)

Expanding this for our choice of rotation angle and axis, we obtain:

U =


cos2 θ

2 − 1√
2

sin θe−iϕ sin2 θ
2 e−2iϕ

1√
2

sin θeiϕ cos θ − 1√
2

sin θe−iϕ

sin2 θ
2 e2iϕ 1√

2
sin θeiϕ cos2 θ

2

 (B.7)

It can be easily checked that this matrix does indeed diagonalize the hamiltonian in Eq.
(B.5). Thus, in general, such a hamiltonian is diagonalized by the rotation matrix that aligns
the quantization axis to S⃗. This nice structure emerges due to the relation between the
group that governs spin transformations, SU(2), and the group that governs rotations in
euclidean space, SO(3)59.



APPENDIX

C Computing vacuum expectations

Consider the following situation. We have a degenerate subspace of doubly-occupied
ground states and a perturbative hamiltonian, V = ∑ii′σσ′ gσσ′

ii′ (d
†
iσdi′σ′ + h.c.). We are now

required to compute matrix elements as follows.

⟨ϕ|V |ψ⟩ = ∑
ii′

σσ′

gσσ′
ii′ ⟨0| dm′β′dmβd†

iσdi′σ′d†
lαd†

l′α′ |0⟩ (C.1)

where |ψ⟩ ≡ d†
lαd†

l′α′ |0⟩ and |ϕ⟩ ≡ d†
mβd†

m′β′ |0⟩. Such a general vacuum expectation can be
resolved using the rules of Wick contractions60 as shown below.

dm′β′dmβd†
iσdi′σ′d†

lαd†
l′α′ −→ δm′iδβ′αδmlδβαδi′l′δσ′α′ (C.2)

dm′β′dmβd†
iσdi′σ′d†

lαd†
l′α′ −→ δm′iδβ′σδml′δβα′δi′lδσ′α (C.3)

dm′β′dmβd†
iσdi′σ′d†

lαd†
l′α′ −→ δm′lδβ′αδmiδβσδi′l′δσ′α′ (C.4)

dm′β′dmβd†
iσdi′σ′d†

lαd†
l′α′ −→ δm′l′δβ′α′δmiδβσδi′lδσ′α (C.5)

This gives us the following expression for the vacuum expectation value.

gσσ′
ii′ ⟨0| dm′β′dmβd†

iσdi′σ′d†
l,αd†

l′α′ |0⟩ = gσσ′
ii′ (δm′iδβ′αδmlδβαδi′l′δσ′α′ + δm′iδβ′σδml′δβα′δi′lδσ′α

+δm′lδβ′αδmiδβσδi′l′δσ′α′ + δm′l′δβ′α′δmiδβσδi′lδσ′α)

(C.6)

It then follows that:

⟨ϕ|V |ψ⟩ = gβ′α′

m′l′δlmδαβ + gβ′α
m′lδl′mδα′β + gβα′

ml′δlm′δαβ′ + gβα
mlδl′m′δα′β′ (C.7)

One can now diagonalize the perturbation in this subspace to obtain the first order energy
correction.

66



Bibliography

[1] R. P. Feynman, International journal of theoretical physics 21, 467 (1982).

[2] I. Georgescu, S. Ashhab, and F. Nori, Reviews of Modern Physics 86, 153 (2014).

[3] T. H. Johnson, S. R. Clark, and D. Jaksch, EPJ Quantum Technology 1, 10 (2014).

[4] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).
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